• Title/Summary/Keyword: moisture addition

Search Result 1,859, Processing Time 0.026 seconds

An Interface Module for Dehumidify Dryer in a Injection Molding Smart Factory System

  • Kang, Un-Gu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.11
    • /
    • pp.123-128
    • /
    • 2018
  • When the injection molding system molds some plastic products, defective product rate will be increased if plastic materials have some excessive moisture content. Therefore, it is very important to control the dehumidification and drying of plastic material. Since the moisture content of the plastic material may change from time to time depending on the material and the molding process, it is necessary to observe the change in real time and maintain a constant moisture content. To solve these problems, I proposed a smart factory system model for plastic molding in this paper. In addition, I designed the interface module to be installed in the dehumidifying dryer which is the core of this process. In addition to this, performance tests were conducted to check the effectiveness and the results were verified as valid.

Strength Evaluation of CFRP Hat-shaped Sectional Members Due to Variation of Collapse Conditions Under Hygrothermal Environment (고온.고습 환경하에서의 압궤조건 변화에 따른 CFRP 모자형 단면부재의 강도평가)

  • Yang, Yong-Jun;Yang, In-Young;Sim, Jae-Ki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.7-14
    • /
    • 2012
  • CFRP composite material has the superior specific strength and rigidity compared to metallic materials, and is widely adopted in the various fields. However, CFRP composite material has the weakness in hygrothermal and crash environment. Especially, moisture ingress into composite material under hygrothermal environment can change molecule arrangement and chemical properties. In addition, interface characteristics and material component properties can be degraded. A collapse experiment has been made to research the differences of absorbed energy and deformation mode between absorbed specimens of moisture and non-moisture. As a result of this study, the effect of moisture absorption and impact loads of about 30~50% reduction in strength are shown.

Effects of heat-moisture treatment of rice flour on the properties in tofu

  • An, Shu;Lee, Kwang Yeon;Lee, Hyeon Gyu
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.1
    • /
    • pp.92-98
    • /
    • 2021
  • The effects of heat-moisture treatment (HMT) on rice flour (RF) have been investigated for possibility of texture modifier in protein-based foods matrix, tofu. The optimum condition for preparation of tofu with maximum textural parameters was investigated by using response surface methodology (RSM). Rice flour was subjected to moisture content (10-30%) and heating temperature (100-140℃). Based on the response surface and superimposed plots, the optimized conditions of hydrothermally treated rice flour was as followed: moisture content, 22%; temperature, 130℃, which showed lower swelling power as compared to native RF and became more stable during continuous heating and agitation than native one. Tofu, prepared with HMT-RF, showed a denser network structure than that with RF, thereby inducing an increase in textural parameters. From the above results, the addition of HMT-RF could preserve the quality of tofu and be useful for developing an acceptable protein-based food product.

Evaluation of Humidity Control Ceramic Board Using Gypsum Binder (석고계 바인더를 활용한 습도도절 세라믹 보드의 특성 평가)

  • Lee, Jong-Kyu;Kim, Tae-Yeon
    • Korean Journal of Materials Research
    • /
    • v.28 no.1
    • /
    • pp.62-67
    • /
    • 2018
  • Active clay, bentonite and zeolite were used as porous materials for humidity controlling ceramic boards. The specific area and the pore volume of active clay were higher than bentonite and zeolite. The flexible strength of the gypsum board decreased with an increasing amount of porous material, and the flexible strength was lowest when active clay with a higher specific surface area than others porous materials was added. The specific surface area and total pore volume of ceramic boards containing porous material were highest at $102.25m^2/g$, $0.142cm^3/g$, respectively, when the active clay was added. In addition, as the amount of added porous materials increased, the specific surface area and total pore volume of the ceramic board increased, but the average pore diameter decreased. The addition of s porous materials with a high specific area and a large pore volume improved the moisture absorptive and desorptive performance of the ceramic board. Therefore, in this experiment, the moisture absorptive and desorptive properties were the best when active clay was added. Furthermore, as the amount of added porous materials increased, the moisture absorptive and desorptive properties improved. When 70 mass% of active clay was added to ${\alpha}$-type gypsum, the hygroscopicity was the highest, about $300g/m^2$, in this experiment.

Quality Characteristics of Muffins with Suchero (슈케로를 첨가한 머핀의 품질특성)

  • Hwang, Yoon-Kyung;An, Hye-Lyung
    • Culinary science and hospitality research
    • /
    • v.23 no.8
    • /
    • pp.1-10
    • /
    • 2017
  • This study investigated the quality characteristics of muffins by the amount of addition of suchero (0%, 25%, 50%, 75%, 100%) as there is increasingly higher interest in functional alternative sweetener. The effects of suchero were evaluated in terms of height, volume, weight, specific volume, baking loss rate, colorimeter, and sensory evaluation. Texture and moisture contents of muffins during storage (1, 2, 3 days) were measured. As the ratio of suchero increased, the volume, specific volume, and weight increased, whereas the volume and specific volume was not significant. During storage, moisture content of muffins decreased significantly. The moisture content of the sample containing suchero was higher than S0(control group). The addition of suchero increased L value of crust and crumb decreased, whereas a value and b value increased. The muffin with 100% of suchero (S100) in test group showed the lowest hardness. According to the sensory evaluation, the muffin with 50% of suchero (S50) showed the highest score in terms of appearance, color, flavor, taste, and overall acceptance, S50 showed the best result and the optimum addition of suchero.

Collapse Characteristics of CFRP Hat Member with Outer Laminated Angle Changes under Hygrothermal Environment with Temperature Changes (다양한 열습환경하에서 최외각층 변화에 따른 CFRP 모자형 부재의 압궤특성)

  • Yang, Yongjun;Hwang, Woochae;Yang, Inyoung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.243-249
    • /
    • 2014
  • Currently, CFRP composites are rapidly replacing steel plates, as they are lighter, stronger, and more elastic; however, they are poorly suited to hygrothermal and impact-collapsed environments because moisture can alter their molecule arrangement and chemical properties. In this study, environments are experimentally simulated in order to investigate changes in the moisture absorption inside a CFRP composite and to determine its weakest point. Moreover, changes in the moisture absorption ratio at temperatures of $60^{\circ}C$ and $80^{\circ}C$ are studied and compared in order to understand how changes in temperature affect moisture absorption inside CFRP composites. Results show that moisture absorption leads to a strength reduction of around 50%. In addition, the moisture absorption rate inside CFRP composites is shown to change rapidly with increasing temperature. Accordingly, it showed that the change in matrix also has a weak point.

Effects of Feed Moisture Content on Enzymatic Hydrolysis of Corn Starch in Twin-Screw Extruder and Saccharification of the Dried Extrudates

  • Solihin, Budiasih W.;Kim, Mi-Hwan;Im, Byung-Soon;Cha, Jae-Yoon;Ryu, Gi-Hyung
    • Food Science and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.381-385
    • /
    • 2007
  • The objective of this experiment was to study the influence of feed moisture content on the degree of enzymatic hydrolysis of com starch in a twin screw extruder and the saccharification yield of the dried extrudate. The feed moisture content was set at 25, 30, and 35% and ${\alpha}$-amylase solution was directly injected into the feed section at a barrel temperature of $95^{\circ}C$ and screw speed of 250 rpm. Amyloglucosidase was used for the saccharification of the dried extrudate at a concentration of 0.055%(w/w). Expansion ratio and swelling factor of extrudates decreased with increasing the feed moisture content. Addition of ${\alpha}$-amylase during extrusion process raised reducing sugar content of extrudates which also increased with the feed moisture content. The saccharification yield of dried extrudate was higher for the extrudate with lower feed moisture content.

Effect of Edible Coatings Containing Soy Protein Isolate (SPI) on the Browning and Moisture Content of Cut Fruit and Vegetables

  • Shon, Jin-Han;Choi, Yong-Hwa
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.3
    • /
    • pp.190-196
    • /
    • 2011
  • Effectiveness of edible coatings containing soy protein isolate (SPI), in reducing oxidative browning and moisture loss during storage ($4^{\circ}C$) of cut apples, potatoes, carrots, and onions was investigated. The SPI coatings were shown to have antioxidative activity. Furthermore, addition of carboxymethyl cellulose (CMC) to the formulations significantly improved its antioxidative activity. Oxidative discoloration, as determined by Commission Internationale De I'Eclairage (CIE) lightness ($L^*$), redness ($a^*$), and yellowness ($b^*$) color scale, was significantly reduced (p <0.05) by SPI coating treatments over a storage time of 120 min. Loss of lightness was reduced by SPI coatings with and without CMC. These respectively showed 4.03 and 3.71% change of $L^*$ value compared to 8.56% for control. Browning of the control in cut potatoes was significantly increased by 106.6% in contrast to 34.3 and 35.2% for SPI coatings with and without CMC, respectively. The $b^*$ values also reflected effectiveness of SPI. Moisture barrier effect was significantly better for the treatments, compared to the control. SPI coatings reduced moisture loss in apples and potatoes, respectively, by 21.3 and 29.6% over the control. Cut onions did not show any treatment effect both in terms of browning and moisture loss. SPI coatings prove to be good moisture barrier and antioxidative property.

Study of Nanoparticle Effect on Durability of Carbon fiber/Epoxy Resin Composites in Moisture Environment (수분환경에서 탄소섬유강화 에폭시수지의 내구성에 대한 나노입자의 영향)

  • Ahn, Seok-Hwan;Choi, Young-Min;Moon, Chang-Kwon
    • Journal of Power System Engineering
    • /
    • v.18 no.2
    • /
    • pp.43-49
    • /
    • 2014
  • This study has been investigated on the durability of carbon fiber/epoxy composites (CFRP) in moisture environment. The carbon fiber/epoxy composites were modified to use the nanoparticles such as carbon nanotubes and titanium oxide. These hybrid composites were exposed to moisture environment for a certain period of time. Weight gain according to immersion time, quasi-static tensile test and micro-graphic characterization were investigated on the samples exposed to moisture environment. Consequently, the weight gains increased with increasing immersion time and weight gain of the hybrid composites was lower than the one of CFRP through the whole immersion time. The tensile strengths decreased with increasing immersion time and tensile strengths of the hybrid composites were higher than the one of CFRP through the whole immersion time. The CFRP were observed more degraded than hybrid compositess in moisture environment. Therefore, it was concluded that the addition of nanoparticles in CFRP could lead to improve the durability in moisture environment.

Estimation of Soil Moisture Using Multiple Linear Regression Model and COMS Land Surface Temperature Data (다중선형 회귀모형과 천리안 지면온도를 활용한 토양수분 산정 연구)

  • Lee, Yong Gwan;Jung, Chung Gil;Cho, Young Hyun;Kim, Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.1
    • /
    • pp.11-20
    • /
    • 2017
  • This study is to estimate the spatial soil moisture using multiple linear regression model (MLRM) and 15 minutes interval Land Surface Temperature (LST) data of Communication, Ocean and Meteorological Satellite (COMS). For the modeling, the input data of COMS LST, Terra MODIS Normalized Difference Vegetation Index (NDVI), daily rainfall and sunshine hour were considered and prepared. Using the observed soil moisture data at 9 stations of Automated Agriculture Observing System (AAOS) from January 2013 to May 2015, the MLRMs were developed by twelve scenarios of input components combination. The model results showed that the correlation between observed and modelled soil moisture increased when using antecedent rainfalls before the soil moisture simulation day. In addition, the correlation increased more when the model coefficients were evaluated by seasonal base. This was from the reverse correlation between MODIS NDVI and soil moisture in spring and autumn season.