• Title/Summary/Keyword: moisture addition

Search Result 1,859, Processing Time 0.025 seconds

Distribution and Behavior of Soil CO2 in Pohang area: Baseline Survey and Preliminary Interpretation in a Candidate Geological CO2 Storage Site (포항 지역 토양 CO2의 분포 및 거동 특성 연구: CO2 지중저장 부지 자연 배경 조사 및 예비 해석)

  • Park, Jinyoung;Sung, Ki-Sung;Yu, Soonyoung;Chae, Gitak;Lee, Sein;Yum, Byoung-Woo;Park, Kwon Gyu;Kim, Jeong-Chan
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.1
    • /
    • pp.49-60
    • /
    • 2016
  • Distribution and behavior of baseline soil CO2 were investigated in a candidate geologic CO2 storage site in Pohang, with measuring CO2 concentrations and carbon isotopes in the vadose zone as well as CO2 fluxes and concentrations through ground surface. This investigation aimed to assess the baseline CO2 levels and to build the CO2 monitoring system before injecting CO2. The gas in the vadose zone was collected using a peristaltic pump from the depth of 60 cm below ground surface, and stored at gas bags. Then the gas components (CO2, O2, N2, CH4) and δ13CCO2 were analyzed using GC and CRDS (cavity ringdown spectroscopy) respectively in laboratory. CO2 fluxes and CO2 concentrations through ground surface were measured using Li-COR in field. In result, the median of the CO2 concentrations in the vadose zone was about 3,000 ppm, and the δ13CCO2 were in the wide range between −36.9‰ and −10.6‰. The results imply that the fate of CO2 in the vadose zone was affected by soil property and vegetations. CO2 in sandy or loamy soils originated from the respiration of microorganisms and the decomposition of C3 plants. In gravel areas, the CO2 concentrations decreased while the δ13CCO2 increased because of the mixing with the atmospheric gas. In addition, the relation between O2 and CO2, N2, and the relation between N2/O2 and CO2 implied that the gases in the vadose zone dissolved in the infiltrating precipitation or the soil moisture. The median CO2 flux through ground surface was 2.9 g/m2/d which is lower than the reported soil CO2 fluxes in areas with temperate climates. CO2 fluxes measured in sandy and loamy soil areas were higher (median 5.2 g/m2/d) than those in gravel areas (2.6 g/m2/d). The relationships between CO2 fluxes and concentrations suggested that the transport of CO2 from the vadose zone to ground surface was dominated by diffusion in the study area. In gravel areas, the mixing with atmospheric gases was significant. Based on this study result, a soil monitoring procedure has been established for a candidate geologic CO2 storage site. Also, this study result provides ideas for innovating soil monitoring technologies.

Soil Management Techniques for High Quality Cucumber Cultivation in Plastic Film Greenhouse (고품질 시설하우스 오이재배를 위한 토양 종합관리 기술)

  • Hyun, Byung-Keun;Jung, Sug-Jae;Jung, Yeon-Jae;Lee, Ju-Young;Lee, Jae-Kook;Jang, Byoung-Choon;Chio, Nag-Doo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.717-721
    • /
    • 2011
  • In case of plastic film greenhouses cultivating fresh vegetables on paddy soil, soil characteristics must be considered as more important factor than any other factors. Generally after the four years of cultivation, soils tend to increase electrical conductivity value, nutrient unbalance and soil pests. As a result, degradation of agricultural products occurred, therefore it is necessary to improve soil conditions. In this study, yield and economic cost of cucumber were analyzed. The best soil conditions for cucumber cultivation were alluvial or valley in soil topology, moderately or poorly drainage in soil drainage classes, coarse loamy soil in texture. In addition, rich-sunlight and-deep groundwater would be proper for the cucumber cultivation. Good environmental managements of plastic film greenhouse were as follows. The temperature needed to be adjusted three times. The optimal daytime temperature could be $22{\sim}28^{\circ}C$, the one from 12 until night could be $14{\sim}15^{\circ}C$, and the temperature from 24 to sunrise could be $10{\sim}12^{\circ}C$. During plant growth period, soil moisture content was as low as 10~15%, and it needed to be maintained as 15~20% during reproductive growth period. To control pests, catch crop cultivation and solar treatment were carried out, after those EC was reduced and the root-knot nematode was controled too. Cucumber yield from the plot with improved soil managements increased to $158.4Mg\;ha^{-1}$, but plot with successive cropping injury yielded $140.3Mg\;ha^{-1}$. The income from the plot with improved soil managements was 215,676 thousand won $ha^{-1}$, the plot with successive cropping injury was 131,649 thousand won $ha^{-1}$. Income rate of each plot was 51.8% and 38.4%, respectively.

Effects of Refrigerated Storage Temperature and Duration on the Seedling Quality of Bare Root Plants and Container Seedlings of Quercus variabilis and Zelkova serrata (저장 온도 및 기간이 굴참나무와 느티나무 노지묘 및 용기묘의 묘목품질에 미치는 영향)

  • Cho, Min Seok;Yang, A-Ram;Noh, Nam Jin
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.3
    • /
    • pp.406-418
    • /
    • 2021
  • This study was conducted to evaluate optimal storage techniques for bare root plants and container seedlings of Quercus variabilis and Zelkova serrata in order to maintain high quality of seedlings until planting. Refrigerated storage treatments were given at two temperatures (-2℃ [freezing] and 2℃ [cooling]) for nine different durations (0, 15, 30, 60, 120, 180, 240, 300, and 360 days after storage). We analyzed total nonstructural carbohydrate (TNC) content and measured shoot moisture content (SMC) during the storage stage and survival rate (SR) and dry weight during the planting stage of seedlings. The TNC content and SMC of the seedlings of the two species decreased with an increase in storage duration. The TNC content of seedlings rapidly decreased after 180~240 days of storage. The TNC reduction rate in the freezing treatment was lower than that in the cooling treatment. Also, with an increase in the storage duration of the two species, the SMC reduction rate in the cooling treatment increased in comparison with that in the freezing treatment. In both the species, the SR after planting decreased rapidly after 60 days of cooling storage and 180 days of freezing storage, respectively. The SR after planting was less than 60% when the TNC content for both the species dropped below 20 mg g-1. In addition, the SR was lower than 80% when SMC measured before storage decreased by approximately 30% and 20% for Q. variabilis and Z. serrata, respectively. Our results suggest that cooling (1~2℃) storage is recommended for a short-term period (2 months or less), whereas freezing (-2~-4℃) storage is suitable for longer periods (2~6 months). These optimal storage techniques, allied with seedling harvesting and handling systems, will improve the quality of seedling production in nursery stages and increase seedling growth performances in plantations.

Effects of Semolina on Quality Characteristics of the Rice Noddles (세몰리나 첨가가 쌀국수의 품질특성에 미치는 영향)

  • Kim, Byong Ki;Park, Jung Eun;Zu, Genuine
    • Food Engineering Progress
    • /
    • v.15 no.1
    • /
    • pp.56-63
    • /
    • 2011
  • Durum wheat semolina was added into wet-milled rice flour in order to improve chewy texture, firm bite ("al dente"), and resistance to overcooking of the ordinary rice noodles. Wet noodles were prepared by mixing 0 (control), 5, 10, 15, and 20% (w/w) of semolina per semolina and rice flour mixtures. Vital gluten (4%, w/w) and salt (2%, w/w) were added to form the pliable strands of wet noodles and final moisture contents of the raw mixtures were equalized at 45%. Pasting properties of the suspended flour mixtures as measured by the Rapid Visco Analyser (RVA) showed slight increases (up to $1.2^{\circ}C)$ in pasting temperatures along with the considerable decreases in peak viscosities as semolina increased at over 15%. Reduced shear thinning and retrogradation of the starch solution that leads to hardening of the cooked noodles were indicated by lowered breakdown viscosities and gaps between finaland setback viscosities from the RVA viscogram as semolina increased at over 10%. Reduced water uptake and turbidity increases of the cooking water as caused by the soluble starches from the noodle were also noted as the content of semolina increased. More or less significant (p<0.05) decreases in colorimetric L (lightness) value of the raw- and cooked noodles were observed as semolina increased while a- (redness) and b (yellowness) values were rather increased at the same moment. Textural properties of the cooked noodles such as hardness, springiness, cohesiveness, gumminess, and chewiness from TPA tests were significantly (p<0.05) influenced by added semolina, even at 5%-levels or more. It can be concluded that addition of semolina into rice flour could provide easy handling of the wet noodles without distortion during transportation, integrity and firm bite of the cooked noodles, and less loss of starch to the cooking water in comparison with the ordinary rice noodle. It was finally suggested that optimum level of the semolina in the product was approximately 10% for the quality wet rice noodle products.

Effect of Fermented Ice Plant Extract on the Inhibition of Triglyceride and Cholesterol Synthesis and Tyrosinase Activity (발효 아이스플랜트(Mesembryanthemum crystallinum L.) 추출물의 triglyceride, cholesterol 합성저해 및 tyrosinase 활성억제 효과)

  • Nam, Sanghae;Kim, Seonjeong;Ko, Keunhee
    • Journal of Life Science
    • /
    • v.29 no.6
    • /
    • pp.688-696
    • /
    • 2019
  • This study investigated changes in triglyceride and cholesterol synthesis and tyrosinase activity induced by ice plant (Mesembryanthemum crystallinum L.) extract, which cannot be stored for long periods of time due to its high moisture content when it was fermented to improve its storage stability. The accumulation of triglyceride and cholesterol in HepG2 cells inhibited the accumulation with a relatively large magnitude in n-butanol and aqueous fractions that generally have high polarity, however, changes in inhibition potency due to the fermentation were not significant. As for the effect to inhibit tyrosinase activity, when L-tyrosine was used as a substrate, the inhibitory activity was the highest for the aqueous fraction at $60.58{\pm}4.03%$ and $63.35{\pm}4.35%$, before and after fermentation, respectively, which amounted to 72% of that of the positive control group (arbutin, $100{\mu}g/ml$). In addition, when L-3,4-dihydroxyphenylalanine (L-DOPA) was used as a substrate, the inhibitory activity was also found the highest for the aqueous fraction at $56.85{\pm}1.57%$ and $59.38{\pm}1.74%$, before and after fermentation, respectively, which amounted to at least 88% of that in the positive control (kojic acid, $100{\mu}g/ml$). Overall, the activity of the fermented ice plant extract was similar or a little higher compared to that of the one without fermentation, indicating that fermentation can be a good approach to improve the storage stability of the ice plant.

Verification of Kompsat-5 Sigma Naught Equation (다목적실용위성 5호 후방산란계수 방정식 검증)

  • Yang, Dochul;Jeong, Horyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1457-1468
    • /
    • 2018
  • The sigma naught (${\sigma}^0$) equation is essential to calculate geo-physical properties from Synthetic Aperture Radar (SAR) images for the applications such as ground target identification,surface classification, sea wind speed calculation, and soil moisture estimation. In this paper, we are suggesting new Kompsat-5 (K5) Radar Cross Section (RCS) and ${\sigma}^0$ equations reflecting the final SAR processor update and absolute radiometric calibration in order to increase the application of K5 SAR images. Firstly, we analyzed the accuracy of the K5 RCS equation by using trihedral corner reflectors installed in the Kompsat calibration site in Mongolia. The average difference between the calculated values using RCS equation and the measured values with K5 SAR processor was about $0.2dBm^2$ for Spotlight and Stripmap imaging modes. In addition, the verification of the K5 ${\sigma}^0$ equation was carried out using the TerraSAR-X (TSX) and Sentinel-1A (S-1A) SAR images over Amazon rainforest, where the backscattering characteristics are not significantly affected by the seasonal change. The calculated ${\sigma}^0$ difference between K5 and TSX/S-1A was less than 0.6 dB. Considering the K5 absolute radiometric accuracy requirement, which is 2.0 dB ($1{\sigma}$), the average difference of $0.2dBm^2$ for RCS equation and the maximum difference of 0.6 dB for ${\sigma}^0$ equation show that the accuracies of the suggested equations are relatively high. In the future, the validity of the suggested RCS and ${\sigma}^0$ equations is expected to be verified through the application such as sea wind speed calculation, where quantitative analysis is possible.

Potential Contamination Sources on Fresh Produce Associated with Food Safety

  • Choi, Jungmin;Lee, Sang In;Rackerby, Bryna;Moppert, Ian;McGorrin, Robert;Ha, Sang-Do;Park, Si Hong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • The health benefits associated with consumption of fresh produce have been clearly demonstrated and encouraged by international nutrition and health authorities. However, since fresh produce is usually minimally processed, increased consumption of fresh fruits and vegetables has also led to a simultaneous escalation of foodborne illness cases. According to the report by the World Health Organization (WHO), 1 in 10 people suffer from foodborne diseases and 420,000 die every year globally. In comparison to other processed foods, fresh produce can be easily contaminated by various routes at different points in the supply chain from farm to fork. This review is focused on the identification and characterization of possible sources of foodborne illnesses from chemical, biological, and physical hazards and the applicable methodologies to detect potential contaminants. Agro-chemicals (pesticides, fungicides and herbicides), natural toxins (mycotoxins and plant toxins), and heavy metals (mercury and cadmium) are the main sources of chemical hazards, which can be detected by several methods including chromatography and nano-techniques based on nanostructured materials such as noble metal nanoparticles (NMPs), quantum dots (QDs) and magnetic nanoparticles or nanotube. However, the diversity of chemical structures complicates the establishment of one standard method to differentiate the variety of chemical compounds. In addition, fresh fruits and vegetables contain high nutrient contents and moisture, which promote the growth of unwanted microorganisms including bacterial pathogens (Salmonella, E. coli O157: H7, Shigella, Listeria monocytogenes, and Bacillus cereus) and non-bacterial pathogens (norovirus and parasites). In order to detect specific pathogens in fresh produce, methods based on molecular biology such as PCR and immunology are commonly used. Finally, physical hazards including contamination by glass, metal, and gravel in food can cause serious injuries to customers. In order to decrease physical hazards, vision systems such as X-ray inspection have been adopted to detect physical contaminants in food, while exceptional handling skills by food production employees are required to prevent additional contamination.

Effect of Dry Surface Treatment with Ozone and Ammonia on Physico-chemical Characteristics of Dried Low Rank Coal (건조된 저등급 석탄에 대한 건식 표면처리가 물리화학적 특성에 미치는 영향)

  • Choi, Changsik;Han, Gi Bo;Jang, Jung Hee;Park, Jaehyeon;Bae, Dal Hee;Shun, Dowon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.532-539
    • /
    • 2011
  • The physical and chemical properties of the dried low rank coals (LRCs) before and after the surface treatment using ozone and ammonia were characterized in this study. The contents of moisture, volatiles, fixed carbon and ash consisting of dried LRCs before the surface treatment were about 2.0, 44.8, 44.9 and 8.9%, respectively. Also, it was composed of carbon of 62.66%, hydrogen of 4.33%, nitrogen of 0.94%, oxygen of 27.01% and sulfur of 0.09%. The dried LRCs was surface-treated with the various dry methods using gases such as ozone at room temperature, ammonia at $200^{\circ}C$ and then the dried LRCs before and after the surface treatment were characterized by the various analysis methods such as FT-IR, TGA, proximate and elemental analysis, caloric value, ignition test, adsorption of $H_2O$ and $NH_3-TPD$. As a result, the oxygen content increased and the calorific value, ignition temperature and the contents of carbon and hydrogen relatively decreased because the oxygen-contained functional groups were additionally generated by the surface oxidation with ozone which plays a role as an oxidant. Also, its $H_2O$ adsorption ability got higher because the hydrophilic oxygen-contained functional groups were additionally generated by the surface oxidation with ozone. On the other hand, it was confirmed that the dried LRCs after the surface treatment with $NH_3$ at $200^{\circ}C$ have the decreased oxygen content, but the increased calorific value, ignition temperature and contents of carbon and hydrogen because of the decomposition of oxygen-contained functional groups the on the surface. In addition, the $H_2O$ adsorption ability was lowered bucause the surface of the dried LRCs might be hydrophobicized by the loss of the hydrophilic oxygen-contained functional groups. It was concluded that the various physico-chemical properties of the dried LRCs can be changed by the surface treatment.

Monitoring of Radioactivity and Heavy Metal Contamination of Dried Processed Fishery Products (건조 수산가공식품의 방사능 및 중금속 오염도 조사)

  • Lee, Ji-Yeon;Jeong, Jin-A;Jeon, Jong-Sup;Lee, Seong-Bong;Kwon, Hye-Jung;Kim, Jeong-Eun;Lee, Byoung-Hoon;Mo, A-Ra;Choi, Ok-Kyung
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.3
    • /
    • pp.248-256
    • /
    • 2021
  • A total of 120 samples corresponding to 12 categories of dried processed fishery products distributed in Gyeonggi-do were examined for radioactivity contamination (131I, 134Cs, 137Cs) and heavy metals (lead, cadmium, arsenic, and mercury). One natural radioactive material, 40K, was detected in all products, while the artificial radioactive materials 131I, 134Cs and 137Cs were not detected at above MDA (minimum detectable activity) values. The detection ranges of heavy metals converted by biological basis were found as follows: Pb (N.D.-0.332 mg/kg), Cd (N.D.-2.941 mg/kg), As (0.371-15.007 mg/kg), Hg (0.0005-0.0621 mg/kg). Heavy metals were detected within standard levels when there was an acceptable standard, but the arsenic content was high in most products, although none of the products had a permitted level of arsenic. In the case of dried processed fishery products, there are products that are consumed by restoring moisture to its original state, but there are also many products that are consumed directly in the dry state, so it will be necessary to set permitted levels for heavy metals considering this situation in the future. In addition, Japan has decided to release contaminated water from the Fukushima nuclear power plant into the ocean, so there is high public concern about radioactivity contamination of food, including fishery products. Therefore, continuous monitoring of various food items will be necessary to ease consumers' anxiety.

Quality characteristics of Halal chicken sausages prepared with biji powder (비지 분말 첨가 Halal 계육 소시지의 조직감 및 항산화특성)

  • Moon, Tae-Hwi;Park, Sun-Min;Yim, Sun-goo;You, Ye-Lim;Han, Jung-Ah
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.3
    • /
    • pp.334-342
    • /
    • 2022
  • To meet the needs of Muslim consumers, sausages were prepared using Halal-certified chicken thighs and different amounts of biji powder (0, 20, 30, 40, and 50%), and then the properties of the sausages were compared. As the biji powder levels increased, both the moisture content and the pH of the sausages significantly decreased, whereas their fiber content increased. As the biji powder levels increased, the free radical scavenging effect (DPPH, ABTS) and water holding capacity also increased, and the textural properties also improved. When Muslim consumers evaluated the sensory attributes of the sausages prepared in this experiment and those currently on the market, the ones prepared in this experiment were preferred over the market products. Based on the above results, chicken sausage for Muslim consumers could be successfully produced, and their overall quality and antioxidant effects could be improved by the addition of biji powder (up to 30%).