• Title/Summary/Keyword: modulus reduction

Search Result 323, Processing Time 0.035 seconds

Development and Verification of a Large Scale Resonant Column Testing System (대형 공진주시험기의 개발 및 검증)

  • Kim, Nam-Ryong;Ha, Ik-Soo;Shin, Dong-Hoon;Kim, Min-Seub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6C
    • /
    • pp.295-304
    • /
    • 2012
  • In this study, a resonant column testing system which is the largest in Korea has been developed to evaluate the dynamic deformation characteristics of coarse granular geomaterials, and the performance and the applicability of the testing system have been verified. The system has been developed as a typical Stokoe type device whose boundary conditions are fixed bottom and free top with additional mass, and can adopt a large specimen with 200 mm in diameter and 400 mm in height. The driving and measurement instruments are configured as high performance and precision systems, hence the automated testing system is appropriate to drive enough stress and to measure the behavior precisely for the test in practical manner. The dynamic response of the mechanical components and the applicability of the system have been evaluated using metal specimens as well as polyurethane specimens, and its precision was verified by comparing its results with those from other equipment and/or methods. To confirm the applicability of the large system for coarse geomaterials, the resonant column test results from both large and normal scale apparatus for the same material were compared and it was found that the result can be partially affected by scale. Finally, the dynamic deformation characteristics of coarse geomaterial which is used for construction of large dam was evaluated using the large system and its practicality could be confirmed.

A Performance Evaluation of mSE-MMA Adaptive Equalization Algorithm in QAM Signal (QAM 신호에서 mSE-MMA 적응 등화 알고리즘의 성능 평가)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.95-100
    • /
    • 2020
  • This paper related with the performance evaluation of mSE-MMA (modified Signed Error-Multi Modulus Algorithm) adaptive equalization algorithm which is possible to reduce the distortion that is occurs in nonlinear communication channel like as additive noise, intersymbol interference and fading. The SE-MMA algorithm are emerged in order to reducing the computational load compared to the presently MMA algorithm, it has the degraded equalization performance by this. In order to improve the performance degradation of SE-MMA, the mSE-MMA controls the step size according to the existence of arbitrary radius circle of equalizer output is centered at transmitted symbol point. The performance of proposed mSE-MMA algorithm were compared to present SE-MMA using the same channel and noise environment by computer simulation. For this, the recoverd signal constellation which is the output of equalizer, residual isi and MD (Maximum Distortion), MSE learning curve which is represents the convergence performance and SER which is represents the roburstness of noise were used as performance index. As a result of simulation, the mSE-MMA has more superior to the SE-MMA in every performance index, and was confirmed that mSE-MMA has roburstness to the noise in the SER performance than SE-MMA especially.

Effect of bamboo shoot dietary fiber on gel properties, microstructure and water distribution of pork meat batters

  • Li, Ke;Liu, Jun-Ya;Fu, Lei;Zhao, Ying-Ying;Zhu, He;Zhang, Yan-Yan;Zhang, Hua;Bai, Yan-Hong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.7
    • /
    • pp.1180-1190
    • /
    • 2020
  • Objective: To develop healthier comminuted meat products to meet consumer demand, the gel properties, rheological properties, microstructure and water distribution of pork meat batters formulated with various amounts of bamboo shoot dietary fiber (BSDF) were investigated. Methods: Different levels of BSDF (0% to 4%) were added to pork batters, and the pH, color, water-holding capacity, texture and rheological properties of pork batters were determined. Then, pork batters were analyzed for their microstructure and water distribution using scanning electron microscopy (SEM) and low-field nuclear magnetic resonance (LF-NMR). Results: Compared with the control, BSDF addition into meat batters showed a significant reduction in L*-value and a significant increase in b*-value (p<0.05). BSDF addition of up to 4% reduced the pH value of pork batters by approximately 0.15 units; however, the cooking loss and expressible water loss decreased significantly (p<0.05) with the increased addition of BSDF. The hardness and gel strength were noticeably enhanced (p<0.05) as the content of BSDF increased. The rheological results showed that BSDF added into pork batters produced higher storage modulus (G') and loss modulus (G") values. The SEM images suggested that the addition of BSDF could promote pork batters to form a more uniform and compact microstructure. The proportion of immobilized water increased significantly (p<0.05), while the population of free water was decreased (p<0.05), indicating that BSDF improved the water-holding capability of pork batters by decreasing the fraction of free water. Conclusion: BSDF could improve the gel properties, rheological properties and water distribution of pork meat batters and decrease the proportion of free water, suggesting that BSDF has great potential as an effective binder in comminuted meat products.

Effects of Microcapsules on Mechanical Properties and Thermal Stability of Microcapsule Embedded Polymeric Resins (마이크로캡슐이 폴리머 수지의 기계적 특성 및 열안정성에 미치는 영향)

  • Yoon, Sung Ho;Kim, Min Sik;Jang, Se Yong
    • Composites Research
    • /
    • v.28 no.5
    • /
    • pp.316-321
    • /
    • 2015
  • This study investigated the effects of microcapsules on mechanical properties and thermal stability of the composite material containing self-healing microcapsules. To this end, tensile specimens and flexural specimens containing melamine-urea-formaldehyde (M-U-F) shell walled microcapsules with diameters of $70{\sim}130{\mu}m$ were manufactured. Varying amount of microcapsules in the specimens was considered: 0 wt%, 0.5 wt%, and 1.0 wt%. The tensile and flexural tests were conducted to evaluate mechanical properties of the specimens containing the microcapsules and the thermogravimetric analysis test was performed to evaluate the thermal stability of the specimens containing the microcapsules. The results show that the tensile strength of the specimens was sensitive to the amount of the microcapsules compared to the tensile modulus even though the tensile modulus of the specimens was not significantly affected by the amount of the microcapsules. However, reduction of the tensile strength was not linearly proportional to the amount of microcapsules; similar results were observed in the flexural test. The weight changes of the specimens containing the microcapsules, as a function of temperature, were similar to those specimens without microcapsules. The thermal stability of the specimens was not affected significantly by the microcapsules embedded in the specimens.

A study of Mechanical Properties of Hot Mix Asphalt for Developing of Quiet Pavement (저소음 포장체 개발을 위한 아스팔트 혼합물의 역학적 특성 연구)

  • Lee, Kwan-Ho;Jeong, Tae-Hyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.49-55
    • /
    • 2009
  • Our domestic economy has been developed very rapidly after 1960's. Also, it is dramatically increasing traffic on road and surround environmental issues. Especially, rapid economic growth has been induced large construction of pavement, and bigger and higher traffic for transportation. These are making air pollution, traffic noise and vibration. The social requirement against the revealed road environment and traffic sound reduction is being demanded. Traffic noise of city zone is showed over the environmental specification more than 57%. In order to overcome these situations, the social attention is being increased. The quiet pavement is the same format of permeable pavement, but is not same for functional performance. In this research, it has been carried out to evaluate the fundamental-mechanical properties of hot mix asphalt for quiet pavement. Especially, couple of laboratory tests are conducted like marshall stability, resilient modulus, indirect tensile test, and compaction energy analysis with gyratory compaction curve. Also, two-layer pavement system has been adopted for developing of quiet pavement. The basic performance of hot mix asphalt of quiet pavement show a satisfaction of specification of hot mix asphalt.

The Performance improvement of CMA Blind Adaptive equalizer using the Constellation Matching Method (Constellation Matching 기법을 이용한 CMA 블라인드 적응 등화기의 성능 개선)

  • Lim, Seung-Gag;Kang, Dae-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.1
    • /
    • pp.121-127
    • /
    • 2010
  • This paper relates with the improved CMA blind adaptive equalization algorithm which uses the constellation matching method that improve the inverse modelling efficiency of a communication channel compared to the present CMA blind adaptive equalizer. The amplitude distortion can be compensated in the present CMA blind adaptive equalizer which is used for the reduction of intersymbol interference by distortion that generate such as a band limited wireless mobile channel, but in the improved adaptive alogorithm operates with the minimize the amplitude phase distortion in the output of equalizer by applying the cost function that is composition of additional signal constellation matching error terms. In order to evaluation of the inverse modeling efficiency of improved algorithm, the residual intersymbol interference and recovered signal constellation were compared by computer simulation. As a result of comparion of computer simulation, the improved algorithm has a good stability in the residual intersymbol interference in the steady state, but it has a slow convergence rate in the adaptation state in initial state.

Site Classification and Design Response Spectra for Seismic Code Provisions - (I) Database and Site Response Analyses (내진설계기준의 지반분류체계 및 설계응답스펙트럼 개선을 위한 연구 - (I) 데이터베이스 및 지반응답해석)

  • Cho, Hyung Ik;Satish, Manandhar;Kim, Dong Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.235-243
    • /
    • 2016
  • Korea is part of a region of low to moderate seismicity located inside the Eurasian plate with bedrock located at depths less than 30 m. However, the spectral acceleration obtained from site response analyses based on the geologic conditions of inland areas of the Korean peninsula are significantly different from the current Korean seismic code. Therefore, suitable site classification scheme and design response spectra based on local site conditions in the Korean peninsula are required to produce reliable estimates of earthquake ground motion. In this study, site-specific response analyses were performed at more than 300 sites with at least 100 sites at each site categories of $S_C$, $S_D$, and $S_E$ as defined in the current seismic code in Korea. The process of creating a huge database of input parameters - such as shear wave velocity profiles, normalized shear modulus reduction curves, damping curves, and input earthquake motions - for site response analyses were described. The response spectra and site coefficients obtained from site response analyses were compared with those proposed for the site categories in the current code. Problems with the current seismic design code were subsequently discussed, and the development and verifications of new site classification system and corresponding design response spectra are detailed in companion papers (II-development of new site categories and design response spectra and III-Verifications)

Experimental and numerical studies on the behaviour of corroded cold-formed steel columns

  • Nie, Biao;Xu, Shanhua;Zhang, Haijiang;Zhang, Zongxing
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.611-625
    • /
    • 2020
  • Experimental investigation and finite element analysis of corroded cold-formed steel (CFS) columns are presented. 11 tensile coupon specimens and 6 stub columns of corroded CFS that had a channel section of C160x60x20 were subjected to monotonic tensile tests and axial compression tests, respectively. The degradation laws of the mechanical properties of the tensile coupon specimens and stub columns were analysed. An appropriate finite element model for the corroded CFS columns was proposed and the influence of local corrosion on the stability performance of the columns was studied by finite element analysis. Finally, the axial capacity of the experimental results was compared with the predictions obtained from the existing design specifications. The results indicated that with an increasing average thickness loss ratio, the ultimate strength, elastic modulus and yield strength decreased for the tensile coupon specimens. Local buckling deformation was not noticeable until the load reached about 90% of the ultimate load for the non-corroded columns, while local buckling deformation was observed when the load was only 40% of the ultimate load for the corroded columns. The maximum reduction of the ultimate load and critical buckling load was 57% and 81.7%, respectively, compared to those values for the non-corroded columns. The ultimate load of the columns with web thickness reduced by 2 mm was 53% lower than that of the non-corroded columns, which indicates that web corrosion most significantly affects the bearing capacity of the columns with localized corrosion. The results predicted using the design specifications of MOHURD were more accurate than those predicted using the design specifications of AISI.

Linear and nonlinear site response analyses to determine dynamic soil properties of Kirikkale

  • Sonmezer, Yetis Bulent;Bas, Selcuk;Isik, Nihat Sinan;Akbas, Sami Oguzhan
    • Geomechanics and Engineering
    • /
    • v.16 no.4
    • /
    • pp.435-448
    • /
    • 2018
  • In order to make reliable earthquake-resistant design of civil engineering structures, one of the most important considerations in a region with high seismicity is to pay attention to the local soil condition of regions. It is aimed in the current study at specifying dynamic soil characteristics of Kirikkale city center conducting the 1-D equivalent linear and non-linear site response analyses. Due to high vulnerability and seismicity of the city center of Kirikkale surrounded by active many faults, such as the North Anatolian Fault (NAF), the city of Kirikkale is classified as highly earthquake-prone city. The first effort to determine critical site response parameter is to perform the seismic hazard analyses of the region through the earthquake record catalogues. The moment magnitude of the city center is obtained as $M_w=7.0$ according to the recorded probability of exceedance of 10% in the last 50 years. Using the data from site tests, the 1-D equivalent linear (EL) and nonlinear site response analyses (NL) are performed with respect to the shear modulus reduction and damping ratio models proposed in literature. The important engineering parameters of the amplification ratio, predominant site period, peak ground acceleration (PGA) and spectral acceleration values are predicted. Except for the periods between the period of T=0.2-1.0 s, the results from the NL are obtained to be similar to the EL results. Lower spectral acceleration values are estimated in the locations of the city where the higher amplification ratio is attained or vice-versa. Construction of high-rise buildings with modal periods higher than T=1.0 s are obtained to be suitable for the city of Kirikkale. The buildings at the city center are recommended to be assessed with street survey rapid structural evaluation methods so as to mitigate seismic damages. The obtained contour maps in this study are estimated to be effective for visually characterizing the city in terms of the considered parameters.

Effect of Aggregate on Mechanical Properties of Ultra-High Strength Concrete Exposed to High Temperature (고온을 받은 초고강도 콘크리트의 역학적 특성에 관한 골재의 영향)

  • Kim, Young-Sun;Choi, Hyoung-Gil;Ohmiya, Yoshifumi;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.431-440
    • /
    • 2011
  • Concrete structures exposed to fire produce changes in their internal structure, resulting in their service life reduction due to the deterioration of its strength and performance capacity. The deterioration level are dependent on the temperature, exposure time, concrete mix proportions, aggregate property, and material properties. This study was performed to evaluate the thermal behavior of ultra-high strength concrete for the parameters of water to cement ratio (compressive strength), fine to total aggregate ratio, and maximum coarse aggregate size. At room temperature and $500^{\circ}C$, tests of ultrasonic pulse velocity, resonance frequency, static modulus of elasticity, and compressive strength are performed using ${\varnothing}100{\times}200\;mm$ cylindrical concrete specimens. The results showed that the residual mechanical properties of ultra-high strength concrete heated to $500^{\circ}C$ is influenced by variation of a water to binder ratio, fine to total aggregate ratio, and maximum coarse aggregate size.