• Title/Summary/Keyword: module extension Banach algebra

Search Result 2, Processing Time 0.019 seconds

PSEUDO JORDAN HOMOMORPHISMS AND DERIVATIONS ON MODULE EXTENSIONS AND TRIANGULAR BANACH ALGEBRAS

  • Ebadian, Ali;Farajpour, Fariba;Najafzadeh, Shahram
    • Honam Mathematical Journal
    • /
    • v.43 no.1
    • /
    • pp.68-77
    • /
    • 2021
  • This paper considers pseudo Jordan homomorphisms on module extensions of Banach algebras and triangular Banach algebras. We characterize pseudo Jordan homomorphisms on module extensions of Banach algebras and triangular Banach algebras. Moreover, we define pseudo derivations on the above stated Banach algebras and characterize this new notion on those algebras.

ON χ ⊗ η-STRONG CONNES AMENABILITY OF CERTAIN DUAL BANACH ALGEBRAS

  • Ebrahim Tamimi;Ali Ghaffari
    • The Pure and Applied Mathematics
    • /
    • v.31 no.1
    • /
    • pp.1-19
    • /
    • 2024
  • In this paper, the notions of strong Connes amenability for certain products of Banach algebras and module extension of dual Banach algebras is investigated. We characterize χ ⊗ η-strong Connes amenability of projective tensor product ${\mathbb{K}}{\hat{\bigotimes}}{\mathbb{H}}$ via χ ⊗ η-σwc virtual diagonals, where χ ∈ 𝕂* and η ∈ ℍ* are linear functionals on dual Banach algebras 𝕂 and ℍ, respectively. Also, we present some conditions for the existence of (χ, θ)-σwc virtual diagonals in the θ-Lau product of 𝕂 ×θ ℍ. Finally, we characterize the notion of (χ, 0)-strong Connes amenability for module extension of dual Banach algebras 𝕂 ⊕ 𝕏, where 𝕏 is a normal Banach 𝕂-bimodule.