• Title/Summary/Keyword: module efficiency

Search Result 1,279, Processing Time 0.033 seconds

The Dynamic Characteristic Test of Oil pump Integrated Balance Shaft Module (오일펌프 내장형 밸런스 샤프트 모듈의 동특성 시험)

  • Seong, Eun-Je;Kang, Dae-Gyu;Jeong, Chan-Yong;Han, Chang-Soo;Kim, Myung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.403-408
    • /
    • 2007
  • According as diesel automobile are produced, reduce noise and vibration that is occurred by characteristic of diesel engine, and need engine room layout optimization and research for light weight of parts. Balance Shaft Module is module parts for vehicles engine to improve performance and efficiency of engine and reduce noise and vibration. These days, an oil pump integrated balance shaft module and an oil sump integrated balance shaft module is on the rising for optimizing of engine room. In this study, produced prototype of oil pump integrated type balance shaft module, and achieved dynamic characteristic test about experimental modal analysis and noise/vibration of balance shaft module.

  • PDF

Design and Reliability Evaluation of 5-V output AC-DC Power Supply Module for Electronic Home Appliances (가전기기용 직류전원 모듈 설계 및 신뢰성 특성 해석)

  • Mo, Young-Sea;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.504-510
    • /
    • 2017
  • This paper presents an AC-DC power module design and evaluates its efficiency and reliability when used for electronics appliances. This power module consists of a PWM control IC, power MOSFETs, a transformer and several passive devices. The module was tested at an input voltage of 220V (RMS) (frequency 60 Hz). A test was conducted in order to evaluate the operation and power efficiency of the module, as well as the reliability of its protection functions, such as its over-current protection (OVP), overvoltage protection (OVP) and electromagnetic interference (EMI) properties. Especially, we evaluated the thermal shut-down protection (TSP) function in order to assure the operation of the module under high temperature conditions. The efficiency and reliability measurement results showed that at an output voltage of 5 V, the module had a ripple voltage of 200 mV, power efficiency of 73 % and maximum temperature of $80^{\circ}C$ and it had the ability to withstand a stimulus of high input voltage of 4.2 kV during 60 seconds.

New Multi-Output LLC Resonant Converter for High Efficiency and Low Cost PDP Power Module

  • Kim Chong-Eun;Moon Gun-Woo;Lee Jun-Young;Oh Kwan-Il;Kwon Joong-Yeol
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.71-74
    • /
    • 2006
  • A new multi-output LLC resonant converter is proposed for high efficiency and low cost plasma display panel (PDP) power module. In the proposed converter, zero-voltage (ZV) turn-on of the primary MOSFETs and zero-voltage (ZC) turn-on and turn-off of the secondary diodes are guaranteed in the overall input voltage and output load ranges. In addition, the primary MOSFETs and the secondary diodes have the low voltage stresses clamped to input and the output voltages, respectively. Therefore, the proposed converter shows the high efficiency due to the minimized switching and conduction losses. Moreover, by employing the transformer with multiple secondary windings, the proposed converter can have multiple outputs, which show the great crossregulation characteristics. Therefore, the proposed converter is suitable for high efficiency and low cost PDP power module.

  • PDF

Fabrication and Electrical Properties of Piezoelectric Inverter Module using Piezoelectric Transformer (압전변압기를 이용한 압전인버터 모듈 제작 및 전기적 특성)

  • Yoon, Jung-Rag;Lee, Chang-Bae;Woo, Byong-Chul
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.1
    • /
    • pp.39-43
    • /
    • 2009
  • In order to develop piezoelectric inverter module for CCFL driving, Rosen-type multilayer piezoelectric transformer was fabricated. The output power and efficiency of mutilayer piezoelectric transformer according to the variation inner electrode layer were investigated. Mutilayer piezoelectric transformer was fabricated conventional mutilayer ceramic method using PZT base ceramics. Also, piezoelectric inverter module was adopted driving circuit with half-bridge type. The piezoelectric inverter module was set up with input voltage 12.5 V, switching frequency 104.3 KHz. The results showed the value of step-up ratio 100, efficiency 87% at load resistance of $100k{\Omega}$.

  • PDF

Effect of Brush Treatment and Brush Contact Sequence on Cross Contaminated Defects during CMP in-situ Cleaning

  • Kim, Hong Jin
    • Tribology and Lubricants
    • /
    • v.31 no.6
    • /
    • pp.239-244
    • /
    • 2015
  • Chemical mechanical polishing (CMP) is one of the most important processes for enabling sub-14 nm semiconductor manufacturing. Moreover, post-CMP defect control is a key process parameter for the purpose of yield enhancement and device reliability. Due to the complexity of device with sub-14 nm node structure, CMP-induced defects need to be fixed in the CMP in-situ cleaning module instead of during post ex-situ wet cleaning. Therefore, post-CMP in-situ cleaning optimization and cleaning efficiency improvement play a pivotal role in post-CMP defect control. CMP in-situ cleaning module normally consists of megasonic and brush scrubber processes. And there has been an increasing effort for the optimization of cleaning chemistry and brush scrubber cleaning in the CMP cleaning module. Although there have been many studies conducted on improving particle removal efficiency by brush cleaning, these studies do not consider the effects of brush contamination. Depending on the process condition and brush condition, brush cross contamination effects significantly influence post-CMP cleaning defects. This study investigates brush cross contamination effects in the CMP in-situ cleaning module by conducting experiments using 300mm tetraethyl orthosilicate (TEOS) blanket wafers. This study also explores brush pre-treatment in the CMP tool and proposes recipe effects, and critical process parameters for optimized CMP in-situ cleaning process through experimental results.

Development and validation of isotope prediction module for VVER spent nuclear fuel analysis

  • Jaerim Jang;Deokjung Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1762-1776
    • /
    • 2024
  • A spent nuclear fuel (SNF) analysis module for the Vodo-Vodyanoi Energetichesky Reactor (VVER) was developed and validated in this study. This advancement expands the application area of the existing nodal diffusion code, RAST-V, and reduces the need for additional code during 3D core simulations for SNF analysis, leading to increased efficiency in simulation time. RAST-V uses Lagrange interpolation and a power correction factor derived from the Bateman equation to bypass the re-depletion calculations, which are used to solve the microdepletion chain. This approach improved the efficiency of analysis. To mirror the conditions during the 3D core simulations, the module used history indices related to the moderator temperature, fuel temperature, and boron concentration. The module can predict 1620 isotopes. This paper presents the validation of this isotope inventory prediction and the application of burnup credit. The VVER analysis module was validated using 28 samples discharged from the Novovoronezh-4. Most isotopes were within 10 % of the boundaries of the measurements. This study successfully offers verification results using VVER benchmarks and discusses the application of burnup credit using a VVER-440 cask.

The Experimental Performance of Rectangular Tube Absorber PV/Thermal Combined Collector Module (사각튜브부착형 흡열판을 적용한 Unglazed PVT 복합모듈의 열적 전기적 성능분석)

  • Jeong, Seon-Ok;Chun, Jin-Aha;Kim, Jin-Hee;Kim, Jun-Tae;Cho, In-Soo;Nam, Seung-Baeg
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.87-92
    • /
    • 2011
  • The heat from PV modules should be removed for better electrical performance, and can be converted into useful thermal energy. A photovoltaic-thermal(PVT)module is a combination of PV module with a solar thermal collector which forms one device that converts solar radiation into electricity and heat simultaneously. The performance of the PV/Thermal combined collector module is directly influenced by solar radiation that also has an effect on PV module temperature. It is also has believe that the energy performance of PV/T collector is related to absorber design as well as PV module temperature. The existing study has been paid to the PV/Thermal combined collector module with circle tube absorbers. The aim of this study is to analyze the experimental performance of the PV/Thermal combined collector rectangular tube absorbers according to solar radiation. The experimental result show that the average thermal and electrical efficiencies of the PVT collector were 43% and14.81% respectively. Solar radiation is one of the most influential factors to determine the energy performance of PVT collector, but from a certain level of solar radiation the PVT collector receives on, its efficiencies began to decrease.

  • PDF

Travel Time Models of a Hybrid Automated Storage/Retrieval Module for Small and Medium-Sized Enterprises (중소기업용 혼합형 자동창고에 대한 주행시간 모형)

  • Lee, Moon-Kyu
    • IE interfaces
    • /
    • v.17 no.spc
    • /
    • pp.52-61
    • /
    • 2004
  • During the past decades automated storage/retrieval (AS/R) systems have been dominantly implemented in most industrial fields due to their handling efficiency and high utilization of storage space. Such AS/R systems consist of several modules each of which contains two racks and a S/R machine. This paper proposes a design of the hybrid AS/R module which can be adopted without too much initial expenditure by most of small-and-medium sized companies. The hybrid module consists of an AS/R module on the upper floor and a traditional warehouse module on the lower floor. For the AS/R module, analytical expressions of the expected travel times for the S/R machine and the elevator per operation are derived. The expected travel times represent the performance of the module and thus can be used for its economic design.

A Study on the Thermal Characteristics of Photovoltaic Modules with Fin (방열핀을 부착한 태양전지 모듈의 열적특성 연구)

  • Kim, Jong-Pil;Lim, Ho;Jeon, Chung-Hwan;Chang, Young-June
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.114-117
    • /
    • 2009
  • The performance of PV module applying the photovoltaic effects of the semiconductor is affected by temperature. Until now, most of PV module show that the power and efficiency falls at a rate of ${\sim}0.5%/^{\circ}C$ and ${\sim}0.05%/^{\circ}C$ respectively as increase of ambient temperature. In this study, the effect of fins attached to the backside of PV module was investigated through a thermal analysis program and simulation model. The result shows that the inner temperature of PV module with fin falls about $10^{\circ}C$ compare to that of ordinary PV module.

  • PDF

Design and Implementation of High Efficiency Transceiver Module for Active Phased Arrays System of IMT-Advanced (IMT-Advanced 능동위상배열 시스템용 고효율 송수신 모듈 설계 및 구현)

  • Lee, Suk-Hui;Jang, Hong-Ju
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.26-36
    • /
    • 2014
  • The needs of active phased arrays antenna system is getting more increased for IMT-Advanced system efficiency. The active phased array structure consists of lots of small transceivers and radiation elements to increase system efficiency. The minimized module of high efficiency transceiver is key for system implementation. The power amplifier of transmitter decides efficiency of base-station. In this paper, we design and implement minimized module of high efficiency transceiver for IMT-Advanced active phased array system. The temperature compensation circuit of transceiver reduces gain error and the analog pre-distorter of linearizer reduces implemented size. For minimal size and high efficiency, the implented power amplifier consist of GaN MMIC Doherty structure. The size of implemented module is $40mm{\times}90mm{\times}50mm$ and output power is 47.65 dBm at LTE band 7. The efficiency of power amplifier is 40.7% efficiency and ACLR compensation of linearizer is above 12dB at operating power level, 37dBm. The noise figure of transceiver is under 1.28 dB and amplitude error and phase error on 6 bit control is 0.38 dB and 2.77 degree respectively.