• Title/Summary/Keyword: modular steel building

Search Result 47, Processing Time 0.025 seconds

A Study on the Automatic Design of Unit Modular House Using Component and Unit DB (부품 및 유닛 DB를 이용한 유닛 모듈라 주택의 설계자동화 연구)

  • Lim Seok-Ho;Kim Soo-Am;Hwang Eun-Kyung
    • Journal of the Korean housing association
    • /
    • v.17 no.3
    • /
    • pp.41-49
    • /
    • 2006
  • Precast concrete apartments were main stream of domestic industrialized housing around 90's, and Steel Houses applying Steel Stud technique with light weighted steel have been dominant portion since 1995. On the other hand, various building techniques including Steel Stud method and highly prefabricated and industrialized Unit method are prevailing in developed countries like Japan. Steel stud and unit box have their own merits and demerits, but the more crucial aspect is that the constant design standard should be applied in each design procedure. It entails the necessity of industrial housing development on the open system basis. In this study, the design standard for unit house will be established coping with the established preparing standard for design specifications defined by architectural law and promotion law of housing construction. That is for design standard of industrialized private housing on the open system basis. This study attempts to propose the design automation, with the method of unit construction of which the rate of pre-fabrication is the biggest, that can cope with the demand of user on the basis of open-system. Ticky-tacky is the biggest technical problem in suppling industrialization housing. Therefore, we will suggest a basic plan for design automation of unit modular housing which can raise the productivity of industrialization housing by applying open system, utilized by DB of component and unit, and solve the problem concerned about ticky-tacky.

Priority Derivation of Modular House Cost Reduction Factors through Case Analysis (시공사례 분석을 통한 모듈러 주택 원가절감 우선순위 항목 도출)

  • Ryu, Kuk-Mu;Moon, Ye-Ji;Cho, Byoung-Hoo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.66-67
    • /
    • 2016
  • Modular construction is attracting attention as the solution of recent problems in construction site. Such as lack of construction workforce, increasing labor costs, work delay due to extreme weather events and strengthening government regulations. However, despite the many advantages, Modular construction has not been activated dueto high construction costs compared to other construction methods. Accordingly, the object of this study is priority derivation of prefabricated house cost reduction factors and use as basic research data. For research performance, we have analyzed the blueprint and bill of quantities of a modular construction based public dormitory which was built in 2013. In result, the proportion of modular construction and on-site construction is 66% and 34%, and the construction cost proportion by activity was devided in to construction(79%), machinery(7%), electricity(5%) and civil(9%). Among these results in order to reduce costs, interior finishing(19.4) steel-frame(16.9%), metal works(13.5%), RC(11.8%), joinery(7.3%) is the order requires focused management.

  • PDF

Test Result on Embedded Steel Column-to-Foundation Connection for Modular Unit Structural System (유닛 모듈러 기둥 매입형 기초 접합부에 대한 실험 연구)

  • Lee, Sang Sup;Bae, Kyu Woong;Park, Keum Sung;Hong, Sung Yub
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.537-547
    • /
    • 2014
  • A steel modular unit structural system has been used increasingly for mid and high-rise buildings, since the building can be easily constructed by assembling the pre-made modular unit structures. For this structural system, each modular unit structures have to be properly connected to the foundation to transfer the axial force and the bending moment that are generated from external load to the ground. In this study, a new type of the embedded steel column-to-foundation connection was proposed, and its flexural behavior was evaluated through a series of experimental study. Five full scale specimens for the proposed connections were constructed and tested. The effect of the main parameters that affect the flexural behavior of the proposed connection, such as embedment length and shape of end plate, were studied. From the results, it was found that the flexural stiffness of the proposed connection was higher than that of the semi-rigid connection for all test specimens, and 200 mm of embedment length was proper for the given test specimens in this study.

Evaluation on the Fire Resistance Performance for High-Rise Modular Walls (중·고층형 모듈러 벽체의 내화성능 평가)

  • Yang, Seung-Cho;Lee, Jae-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.15-22
    • /
    • 2019
  • The use of modular buildings is increasing because of various advantages of modular buildings. But there are limits to apply modular buildings to medium-rise buildings because the building law provides only the specification criteria of the modular building with respect to the 1 hour fire resistance performance. This study was conducted to investigate 2 hours fire resistance performance of load bearing walls with steel studs in modular buildings by KS F 2257-1 and KS F 2257-4. After full scale tests, load bearing walls ensuring two hours fire resistance performance consist of at least 2 layers of fire resistance plaster boards of 19mm thickness or 3 layer of fire resistance plaster boards of thickness.

Development of a Modular Building System for the BOQ Using Six-sigma (식스-시그마를 이용한 군 독신자 숙소용 모듈러 건축 시스템 개발)

  • Cho, Bong-Ho;Lee, Jae-Sung;Cha, Hee-Sung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.6
    • /
    • pp.89-99
    • /
    • 2010
  • Military Barracks and Bachelor Officer's Quarters are public buildings representing architectural characteristics with repeating the same room modules. These buildings require easy dismantling and reusing for the next generation' military re-organization. For these reasons, since 2005, the modular construction has been applied to military buildings. The most important factors required for modular military buildings are standardization, lowcost construction and reusable construction method. However, conventional modular building system have not been matched with these requirements. This study suggests a new modular system for Bachelor Officer's Quarters using Six-sigma design tool. To reflect the voices of customers, market study and surveys were carried out. Through the QFD, the voices of customers were converted into quality characteristics of building system for BOQ. The various design concepts meeting customer's requirement were derived by the QFD and Pugh matrix methodology. The proposed modular building system shows 80% increased factory production rate and 62% decreased weight of steel frame as compared with the conventional modular building system.

Comparison of Behavior of Connections between Modular Units according to Shape of Connector Plates (연결 강판 형상에 따른 모듈러 유닛 간 접합부의 거동 비교)

  • Lee, Sang Sup;Bae, Kyu Woong;Park, Keum Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.6
    • /
    • pp.467-476
    • /
    • 2016
  • For the connections between modular units in modular buildings, the bolted joints with connector plates are used commonly. The strength of structure is determined by the weakest part of structure and the connections may be weaker than the members being joined. Therefore, to check the safety of modular building, the structural performance of connections between modular units as well as that of beam-to-column connections should be evaluated. In this study, the behavior of module to module connection with straight and cross shaped connector plates is investigated by lateral cyclic tests according to KBC2009 0722.2.4 which shall be conducted by controlling the story drift angle in the width and the longitudinal direction respectively. All of test results generally show the stable ductile behavior up to 0.04rad drift levels and the tests in longitudinal direction show a superior energy dissipation per cycle in each of the load steps. However, the straight shaped connector plates have the degradation of stiffness with cyclic loading and the larger drift angle of column than the cross shaped connector plates.

Parametric Modeling Method for 3D Assembly Design of Parts Composing Superstructure Module on Modular Steel Bridge (모듈러 강교량 상부모듈 구성파트의 3차원 조립설계를 위한 파라메트릭 모델링 방법)

  • Lee, Sang Ho;An, Hyun Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.35-46
    • /
    • 2013
  • A parametric modeling method, one of the core technology of BIM (Building Information Modeling), is proposed for efficient 3D assembly design among components of a superstructure module of modular steel bridge. Assembly system is classified into 3 levels as LoD (Level of Details) for 3D assembly design of the parts. Components forming 3D shape of the parts are identified and defined as parameters, variables depending on parameters, or constants independent of the parameters. Then, spatial assembly rules among the parts are defined according to the assembly system. Positional relations among the identified shape components are defined for mating spatial position and geometrical relations are defined for constraining degree of freedom on X, Y, and Z axis. Finally, a standardized template is designed by applying the rules to 3D based assembly design for the parts of the superstructure module. In addition, applicability of the parametric modeling method is demonstrated by testing the shape variation of the superstructure module according to changing the defined parameters.

Structural Behavior on Horizontal Connection for Hybrid Precast Concrete Panel (복합 프리캐스트 콘크리트 패널 수평접합부의 구조적 거동)

  • Lee, Sang-Sup;Park, Keum-Sung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.155-162
    • /
    • 2019
  • Hybrid precast concrete panel is a wall element that is able to quickly construct the core wall structure for moderate-rise modular buildings. Hybrid precast concrete panel has unique characteristics which is a pair of C-shaped steel beams combined at the top and bottom of a concrete wall, In this study, an improved anchorage detail for vertical rebar is proposed to ensure the lateral force resistance performance of hybrid precast concrete panel emulating monolithic concrete wall. Also, the structural performance of horizontal connection is investigated experimentally with the bolt spacing parameter. And the behavior of hybrid precast concrete panel with the improved detail is compared with the monolithic concrete wall tested in a previous study. Finally, the required thickness of C-shaped steel beam to eliminate or minimize the deformation in horizontal connection is calculated by prying action equation.

An Economic Analysis of Steel Framed Modular Housing: Compared with Case of Urban Type Living Housing of Wall-slab (강재 프레임 주택형 모듈러의 경제성 분석: 벽식구조인 도시생활형주택과의 사례비교를 통해)

  • Bang, Jong-Dae;Chun, Chu-Young;Park, Ji-Young;Kim, Jong-Yeob;Kim, Gap-Deug;Chun, Young-Soo
    • Land and Housing Review
    • /
    • v.5 no.4
    • /
    • pp.305-314
    • /
    • 2014
  • The technology-intensive unit modular method of factory production method is attracting attention by the limit of the labor-intensive and field centered wet construction method. In recent years, the unit modular method has been applied to the construction of schoolhouse and BOQ(bachelor offices' quarters), dormitories, etc. But the modular method still is not used in housing construction by the lack of verification of resident performance and construction cost. Therefore, this study analyzed the economics of modular house to vitalize the constructed residential building by modular method and to develop the modular method. According to the study results, the construction cost of the modular house was analysed more about 6.2% expensive than that of the existing housing. However, if the construction duration of modular house is shortened or the productivity of modular house is increased, the construction cost of modular house will be similar to the that of the existing house.

Generation of Information Model for Modular Steel Bridge Superstructure Considering Module Assembly Condition (모듈 조합조건을 고려한 모듈러 강교량 상부구조의 정보모델 생성)

  • Seo, Kyung-Wan;Park, Junwon;Kwon, Tae Ho;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.4
    • /
    • pp.393-400
    • /
    • 2015
  • This study proposes a method to create and combine a superstructure module by parametric modeling, in order to improve the production efficiency of information model for modular steel bridge superstructure that can be used in planning, design and construction phase. Compound classification was performed in order to derive elements to apply the parametric modeling, and according to assembly condition, the classified elements were grouped into 13 types. In addition, three assembly conditions were derived for production of stable superstructure through combination of superstructure module, which is a production unit for modular steel bridge factory. Parameter that reflects assembly condition in compound shape when producing superstructure module through parametric modeling was deducted. Superstructure module compounds were produced according to type and parameter using interface generation based on Building Information Model(BIM) software that was developed in this study. The superstructure module produced reflects information to combine into a superstructure. To verify this, information model based on Industry Foundation Classes(IFC) was built and confirmed the application in production of superstructure by identifying the reflected property information.