• Title/Summary/Keyword: modular and automorphic functions

Search Result 2, Processing Time 0.015 seconds

GENERATION OF CLASS FIELDS BY SIEGEL-RAMACHANDRA INVARIANTS

  • SHIN, DONG HWA
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.907-928
    • /
    • 2015
  • We show in many cases that the Siegel-Ramachandra invariants generate the ray class fields over imaginary quadratic fields. As its application we revisit the class number one problem done by Heegner and Stark, and present a new proof by making use of inequality argument together with Shimura's reciprocity law.

Ω-RESULT ON COEFFICIENTS OF AUTOMORPHIC L-FUNCTIONS OVER SPARSE SEQUENCES

  • LAO, HUIXUE;WEI, HONGBIN
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.945-954
    • /
    • 2015
  • Let ${\lambda}_f(n)$ denote the n-th normalized Fourier coefficient of a primitive holomorphic form f for the full modular group ${\Gamma}=SL_2({\mathbb{Z}})$. In this paper, we are concerned with ${\Omega}$-result on the summatory function ${\sum}_{n{\leqslant}x}{\lambda}^2_f(n^2)$, and establish the following result ${\sum}_{\leqslant}{\lambda}^2_f(n^2)=c_1x+{\Omega}(x^{\frac{4}{9}})$, where $c_1$ is a suitable constant.