• Title/Summary/Keyword: modular analysis

Search Result 606, Processing Time 0.026 seconds

Assessment of Quality Assurance in the Lifting and Assembly Phase of Modular Construction: An Importance-Performance Analysis Approach (중요도-성취도 분석을 이용한 모듈러 건축프로젝트 현장설치 및 양중 단계의 품질 관리방안에 관한 연구)

  • Lee, Jeong-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.5
    • /
    • pp.595-605
    • /
    • 2023
  • With the escalating prevalence of modular construction projects, there is a concurrent surge in scholarly and industrial intrigue in this domain, leading to a broadened spectrum of its applications. Modular construction, inherently facilitated by controlled factory settings, boasts the capability to consistently deliver edifices of superior quality. To optimize this advantage, the judicious integration of quality assurance methodologies during the site-specific phases of lifting and assembly is non-negotiable. This research embarked on a survey directed at project stakeholders, aiming to gauge the perceived significance and efficaciousness of prevailing quality preservation and oversight protocols during the aforementioned site stages, subsequently employing the Importance-Performance Analysis(IPA) for data interpretation. The findings elucidated that, while a majority of quality assurance procedures were adeptly executed, perceptual disparities existed among stakeholders regarding certain aspects, prompting recommendations for enhancement. This investigative endeavor lays a foundation, aiding future studies in amplifying the quality assurance cognizance among professionals during modular construction's site-assembly phase.

A Study on the Modular Design of Hybrid Lightweight Carbody Structures Made of Sandwich Composites and Aluminum Extrusion (샌드위치 복합재와 알루미늄 압출재를 적용한 하이브리드 경량 차체 구조물의 모듈화 설계 연구)

  • Jang, Hyung-Jin;Shin, Kwnag-Bok;Han, Seong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2644-2649
    • /
    • 2011
  • The purpose of this study is to propose the modular design of hybrid lightweight carbody structures made of sandwich composites and aluminum extrusion. The sandwich composites were used for secondary structures to minimize the weight of carbody, and the aluminum extrusions were applied to primary structures to improve the stiffness of carbody and manufacturability. Key requirements were defined for the modular design of hybrid carbody, and the applied parts of sandwich composites were determined through the topology optimization analysis. Consequently, feasibility of enhancing mass saving and maintainability in modular hybrid carbody design were presented, comparing with the carbody structures made of aluminum extrusion or sandwich composites only.

  • PDF

A Study on Component Modular Approach for Type Synthesis Automation of Mechanism (기구 형태설계 자동화를 위한 컴포넌트 모듈 접근법에 관한 연구)

  • 김봉주;윤호업;신중호;권순만;장세원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1270-1273
    • /
    • 2004
  • The mechanism design is synthesis of suitable mechanism which can be output motions about input motions. That has generally two steps which are the type synthesis and the dimensional synthesis. And required mechanism analysis step for confirming middle or final result. The type synthesis is definition of mechanism type which required aim and the dimensional synthesis is calculation of dimension about defined type mechanism. The type synthesis of mechanism is included qualitative design field which isn't defined systematic design method. especially, the most difficult step for mechanism design automation. In this paper proposed the component modular design method which is figured mechanism types automate with component modules using component modular approach. And develop CAD(Computer Aided Program) program for application.

  • PDF

A Modular Disturbance Observer-based Cascade Controller for Robust Speed Regulation of PMSM

  • Kim, In Hyuk;Son, Young Ik
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1663-1674
    • /
    • 2017
  • This paper deals with the robust speed regulation of a surface-mounted permanent magnet synchronous motor (SPMSM) that is subject to parametric uncertainties and external disturbances. The proposed approach retains a conventional cascade control configuration composed of an outer-loop speed control module and inner-loop current control modules. Baseline proportional-integral (PI) controllers are designed for nominal modular systems without accounting for the uncertainties to set a desired control performance of the closed-loop system. After studied in both frequency and time domains, a reduced-order proportional-integral observer (PIO), as a modular disturbance observer, is incorporated with each control module to maintain the ideal performance of the modules. Theoretical analysis confirms the desired performance recovery of the augmented system with modular PIOs to the nominal system. Comparative computer simulations and experimental results validate the proposed cascade control method for SPMSM speed regulation.

Digital Control Strategy for Input-Series-Output-Parallel Modular DC/DC Converters

  • Sha, Deshang;Guo, Zhiqiang;Liao, Xiaozhong
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.245-250
    • /
    • 2010
  • Input-series-output-parallel (ISOP) converters consisting of multiple modular DC/DC converters can enable low voltage rating switches to be used under high voltage input applications. This paper presents a digital control strategy, which can achieve equal sharing of input voltage for a modular ISOP system consisting of two-transistor forward DC/DC converters by forcing the input voltages of neighboring modules to be equal. The proposed scheme is analyzed using small signals analysis based on the state space average method. The performance of the proposed control strategy is verified with an experimental prototype of an ISOP converter made up of three two-switch forward converters.

Improved Design of High School Girl's Summer Uniform Based on Style Theory

  • Zhang, Ling-Xi;Wang, Jian-Ping
    • International Journal of Costume and Fashion
    • /
    • v.15 no.2
    • /
    • pp.63-77
    • /
    • 2015
  • By means of statistical analysis and module concept, this paper investigated the current situation of high school girl's uniform and put forward its improved design and database establishment. Combined with the survey data, the future design direction and trend of the high school girls' uniform were proposed. By using modular design concept, the uniform is divided into five modules, and a style database has been built. Meanwhile, the parametric pattern database has been completed by using garment CAD system, based on the style database above, which has 42,336 possibilities to assemble a pair of school uniform. Combining with digital sewing techniques and by using computerized embroidery machine, the personalized design of high school girl's summer uniform has been realized. And two simulated case have been given for examples to prove its feasibility. The idea of modular design and parametric design method proposed in this study offer references for establishing the modular design database and parametric pattern database for other types of school uniform and are of relatively high practical and theoretical value.

Sequential pattern load modeling and warning-system plan in modular falsework

  • Peng, Jui-Lin;Wu, Cheng-Lung;Chan, Siu-Lai
    • Structural Engineering and Mechanics
    • /
    • v.16 no.4
    • /
    • pp.441-468
    • /
    • 2003
  • This paper investigates the structural behavior of modular falsework system under sequential pattern loads. Based on the studies of 25 construction sites, the pattern load sequence modeling is defined as models R (rectangle), L and U. The study focuses on the system critical loads, regions of largest reaction forces, discrepancy between the pattern load and the uniform load, and the warning-system plan. The analysis results show that the critical loads of modular falsework systems with sequential pattern loads are very close to those with the uniform load used in design. The regions of largest reaction forces are smaller than those calculated by the uniform load. However, the regions of largest reaction forces of three models under sequential pattern loads can be considered as the crucial positions of warning-system based on the measured index of loading. The positions of the sensors for the warning-system for these three different models are not identical.

On Designing Optimal Structure of Modular Wavelet Neural Network with Time-Frequency Analysis (시간-주파수 분석을 이용한 모듈라 웨이블렛 신경망의 최적 구조 설계)

  • Seo, Jae-Yong;Kim, Yong-Taek;Cho, Hyun-Chan;Jeon, Hong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.2
    • /
    • pp.12-19
    • /
    • 2001
  • In this paper, we propose the new algorithm which can design on the optimal structure of modular system. This system is composed to the wavelet neural network in order to simplify the structure of modular system and use the time-frequency analysis. We will determine the number of module and node of each sub-system using the proposed algorithm. This algorithm provides the methodology, which we will design optimal structure of modular wavelet neural network through analyzing the character of system. We apply the proposed new structure and algorithm to approximation problem and evaluate the effectiveness of the proposed system and algorithm.

  • PDF

Investigation of Capacitor Voltage Regulation in Modular Multilevel Converters with Staircase Modulation

  • Shen, Ke;Wang, Jianze;Zhao, Dan;Ban, Mingfei;Ji, Yanchao;Cai, Xingguo
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.282-291
    • /
    • 2014
  • This paper presents a detailed theoretical analysis and performance assessment of the capacitor voltage balancing strategies for staircase modulated modular multilevel converters (MMC) in terms of the algorithm structures, voltage balancing effect, and switching frequency. A constant-frequency redundancy selection (CFRS) method with minimal switching loss is proposed and the function realization of specific modules of the algorithm is given. This method is simple and efficient in both switching frequency and regulation capacity. Laboratory results show very good agreement with the theoretical analysis and numerical simulations.

Frequency Analysis of Adaptive Behavior of NEAT based Control for Snake Modular Robot (뱀형 모듈라 로봇을 위한 NEAT 기반 제어의 적응성에 대한 주파수 분석)

  • Lee, Jaemin;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.9
    • /
    • pp.1356-1362
    • /
    • 2015
  • Modular snake-like robots are robust for failure and have flexible locomotions for obstacle environment than of walking robot. This requires an adaptation capability which is obtained from a learning approach, but has not been analysed as well. In order to investigate the property of adaptation of locomotion for different terrains, NEAT controllers are trained for a flat terrain and tested for obstacle terrains. The input and output characteristics of the adaptation for the neural network controller are analyzed for different terrains in frequency domain.