• Title/Summary/Keyword: modular FRP hulls

Search Result 2, Processing Time 0.015 seconds

On the Development of Bonded Joints for Modular FRP Hulls using Moulding-In Concept (모듈방식 FRP 선체를 위한 Moulding-In 개념 기반의 접합 이음부 개발에 관한 연구)

  • Jeong, Han Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.531-539
    • /
    • 2017
  • This paper deals with the development of bonded joints for fibre reinforced plastic (FRP) hull structures using moulding-in concept. Focus is placed on bonded in-plane connections between two adjacent panels that could form the boundaries of hull structural module. Traditional construction in FRP hull structures requires the construction of a mould, usually from steel or aluminium. In this construction the FRP materials are laid in the mould, and resin is saturated, and then the structural member is cured. This is expensive since it involves the fabrication of metal hull mould for every different hull type, which is sacrificed after the production of the FRP ship. One way of encouraging greater use of FRP in ship construction is to investigate the possible construction of FRP hull structures in a similar manner to metallic ships, that is in terms of blocks or modules. Such a manner of construction would eliminate the need for expensive hull moulds permitting greater flexibility in the construction of FRP ships. The main issue then would be the design and construction of adequate bonded connections between adjacent panels. To fulfill this object, the simplified and automated way of manufacturing joint edge shapes for bonded joints is developed, and their structural assessment is performed in both experimentally and numerically.

Sensitivity Evaluation and Approximate Optimization Analysis for Structure Design of Module Hull Type Trimaran Pontoon Boat (모듈 선체형 삼동 폰툰 보트의 구조설계 민감도 평가와 근사 최적화 해석)

  • Bo-Youp Choi;Chang-Ryeon Son;Joon-Sik Son;Min-Ho Park;Chang-Yong Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1279-1288
    • /
    • 2023
  • Recently, domestic leisure boats have been actively researching eco-friendly product development to enter the global market. Since the hulls of existing leisure boats are mainly made of fiber reinforced plastic (FRP) or aluminum, design techniques for securing structural safety by applying related materials have been mainly studied. In this study, an initial structural design safety assessment of a trimaran pontoon leisure boat with a modular hull structure and eco-friendly high-density polyethylene (HDPE) material was conducted, and sensitivity evaluation and optimization analysis for lightweight design were performed. The initial structural design safety assessment was carried out by creating a finite element analysis model and applying the loading conditions specified in the ship classification regulation to check whether the specified allowable stresses are satisfied. For the sensitivity evaluation, the influence of stress and weight of each hull structural member was evaluated using the orthogonal array design of experiments method, and an approximate model based on the response surface method was generated using the results of the design of experiments. The optimization analysis set the thickness of the hull structural members as the design variable and considered the optimal design formulation to minimize the weight while satisfying the allowable stress. The algorithm of the optimization analysis applied the Gradient-population Based Optimizer (GBO) to improve the accuracy of the optimal solution convergence while reducing the numerical cost. Through this study, the optimal design of a newly developed eco-friendly trimaran pontoon leisure boat with a weight reduction of 10% was presented.