• Title/Summary/Keyword: modified truss-arch model

Search Result 7, Processing Time 0.016 seconds

Theoretical and experimental study on shear strength of precast steel reinforced concrete beam

  • Yang, Yong;Xue, Yicong;Yu, Yunlong
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.443-454
    • /
    • 2019
  • With the aim to put forward the analytical model for calculating the shear capacity of precast steel reinforced concrete (PSRC) beams, a static test on two full-scale PSRC specimens was conducted under four-point loading, and the failure modes and strain developments of the specimens were critically investigated. Based on the test results, a modified truss-arch model was proposed to analyze the shear mechanisms of PSRC and cast-in-place SRC beams. In the proposed model, the overall shear capacity of PSRC and cast-in-place SRC beams can be obtained by combining the shear capacity of encased steel shape with web concrete determined by modified Nakamura and Narita model and the shear capacity of reinforced concrete part determined by compatible truss-arch model which can consider both the contributions of concrete and stirrups to shear capacity in the truss action as well as the contribution of arch action through compatibility of deformation. Finally, the proposed model is compared with other models from JGJ 138 and AISC 360 using the available SRC beam test data consisting of 75 shear-critical PSRC and SRC beams. The results indicate that the proposed model can improve the accuracy of shear capacity predictions for shear-critical PSRC and cast-in-place SRC beams, and relatively conservative results can be obtained by the models from JGJ 138 and AISC 360.

Shear behavior of the hollow-core partially-encased composite beams

  • Ye, Yanxia;Yao, Yifan;Zhang, Wei;Gao, Yue
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.883-898
    • /
    • 2022
  • A hollow-core partially-encased composite beam, named HPEC beam, is investigated in this paper. HPEC beam comprises I-beam, longitudinal reinforcement, stirrup, foam formwork, and cementitious grout. The foam formwork is located on both sides of the web, and cementitious grout is cast within the steel flange. To investigate the shear performance of HPEC beams, static loading tests of six HPEC beams and three control beams were conducted. The shear span ratio and the number of studs on the shear behavior of the HPECspecimens were studied. The failure mechanism was studied by analyzing the curves of shear force versus both deflection and strain. Based on the shear span ratio (𝜆), two typical shear failure modes were observed: shear compression failure when 1.6 ≤ 𝜆 ≤ 2; and diagonal compression failure when 𝜆 ≤ 1.15. Shear studs welded on the flange can significantly increase the shear capacity and integrity of HPEC beams. Flange welded shear studs are suggested. Based on the deformation coordination theory and superposition method, combined with the simplified modified compression field model and the Truss-arch model, Modified Deformation Coordination Truss-arch (M.D.C.T.) model was proposed. Compared with the shear capacity from YB9038-2006 and JGJ138-2016, the calculation results from M.D.C.T. model could provide reasonable predictions.

Semi-active control on long-span reticulated steel structures using MR dampers under multi-dimensional earthquake excitations

  • Zhou, Zhen;Meng, Shao-Ping;Wu, Jing;Zhao, Yong
    • Smart Structures and Systems
    • /
    • v.10 no.6
    • /
    • pp.557-572
    • /
    • 2012
  • This paper focuses on the vibration control of long-span reticulated steel structures under multi-dimensional earthquake excitation. The control system and strategy are constructed based on Magneto-Rheological (MR) dampers. The LQR and Hrovat controlling algorithm is adopted to determine optimal MR damping force, while the modified Bingham model (MBM) and inverse neural network (INN) is proposed to solve the real-time controlling current. Three typical long-span reticulated structural systems are detailedly analyzed, including the double-layer cylindrical reticulated shell, single-layer spherical reticulated shell, and cable suspended arch-truss structure. Results show that the proposed control strategy can reduce the displacement and acceleration effectively for three typical structural systems. The displacement control effect under the earthquake excitation with different PGA is similar, while for the cable suspended arch-truss, the acceleration control effect increase distinctly with the earthquake excitation intensity. Moreover, for the cable suspended arch-truss, the strand stress variation can also be effectively reduced by the MR dampers, which is very important for this kind of structure to ensure that the cable would not be destroyed or relaxed.

A New Refined Truss Modeling for Shear-Critical RC Members (Part I) - lts derivation of Basic Concept - (전단이 지배하는 RC부재의 새로운 트러스 모델링 기법 연구 (전편) - 기본 개념 유도를 중심으로 -)

  • Kim Woo;Jeong Jae-Pyong;Kim Dae-Joong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.785-794
    • /
    • 2004
  • This paper describes a new refined truss modeling technique derived based on the well-known relationship of V=dM/dx=zdT/dx+Tdz/dx in a reinforced concrete beam subjected to combined shear and moment loads. The core of the model is that a new perspective on the shear behavior can be gained by considering the variation of the internal arm length along the span, so that the shear resistance mechanism can be expressed by the sum of two base components; arch action and beam action. The sharing ratio of these two actions is determined by accounting for the compatibility of deformation associated to the two actions. Modified Compression Field Theory and the tension-stiffening effect formula in CEB/FIP MC-90 are employed in calculating the deformations. Then the base equation of V=dM/dx has been numerically duplicated to form a new refined truss model.

Shear Behavioral Model based on Shear Deformation Compatibility in Reinforced Concrete Members (전단변형적합조건에 기반한 철근콘크리트 부재의 전단 해석 모델)

  • Kim, Woo;Rhee, Chang-Shin;Jeong, Jae-Pyong
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.379-388
    • /
    • 2006
  • This paper presents a model for evaluating the contribution by arch action to shear resistance in shear-critical reinforced concrete beams. Based on the relationship between shear and bending moment in beams subjected to combined shear and bending, the behavior of a beam is explicitly divided into two base components of the flexural action and the tied arch action. The compatibility condition of the shear deformation that deviates from Bernoulli bending plane is formulated utilizing the smeared truss idealization with an inclined compression chord. The Modified Compression Filed Theory is employed to calculate the shear deformation of the web, and the relative axial displacements of the compression and the tension chord by the shear flow are also calculated. From this shear compatibility condition in a beam, the shear contribution by the arch action is numerically decoupled. Then the validity of the model is examined by applying the model to some selected test beams in literatures. The results may confirm the rationale of the proposed behavioral model.

Decomposition of Shear Resistance Components in Reinforced Concrete Beams (철근콘크리트 보의 전단저항 성분 분해)

  • Rhee, Chang-Shin;Shin, Geun-Ok;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.819-825
    • /
    • 2006
  • The objective of the present study is to verify the validity of a new truss model for evaluating the contribution by arch action to shear resistance in shear-critical reinforced concrete beams. The new truss model is based on the relationship between shear and bending moment in a beam subjected to combined shear and bending. The compatibility condition of the shear deformation that deviates from Bernoulli bending plane is formulated utilizing the smeared truss idealization with an inclined compression chord. The Modified Compression Filed Theory is employed to calculate the shear deformation of the web, and the relative axial displacements of the compression and the tension chord by the shear flow are also calculated. From this shear compatibility condition in a beam, the shear contribution by the arch action is numerically decoupled. Then the validity of the model is examined by applying the model to some selected test beams in literatures. On the basis of the analytical results, the contribution by the web to shear resistance can be constant and have an excellent linear correlation with the web reinforcement ratio. The present decoupling approach may provide a simple way for the assessment of the role of each parameter or mechanism that affects the ultimate shear behavior of reinforced concrete beams.

Behaviour of Beams Without Transverse Reinforcement (전단보강근이 없는 보의 거동)

  • Cho, Soon-Ho
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.173-181
    • /
    • 1999
  • To deepen the understanding of shear behaviour in beams without transverse reinforcement, the relative importance of five contributing factors to concrete shear resistance($v_c$), which are i)flexural compression zone, ii)friction at crack faces, iii)dowel action, iv)arch action and recently identified, v)residual tensile stresses across cracks, was explained physically using two analytical methods based on the truss concept. One is called "Modified Compression Field Theory(MCFT)" considering ii) and v) explicitly, and the other "Crack Friction Truss Model(CFTM)" more dominantly ii) in determining concrete resistance. To verify their effectiveness, the predictions using MCFT and CFTM were also made for twenty KAIST beam tests($f'_c$=53.7Mpa), designated more likely to the development of the size effect law based on the fracture mechanics concept. Experimental findings with varying of a/d, longitudinal reinforcement ratios, and obtained from MCFT enabled additional explanations for some phenomena which were difficult to measure in tests. However, MCFT seemed somewhat conservative for beams with higher longitudinal reinforcement, while somewhat unsafe for beams with larger depths. More tests are necessary leading to firm conclusions in these areas.