• Title/Summary/Keyword: modified space vector modulation

Search Result 31, Processing Time 0.019 seconds

Bq-ZSI fed Induction Motor Drive System Using Modified Space Vector Modulation (변형 공간벡터 변조 기법이 적용된 Bq-ZSI를 이용한 유도전동기 구동시스템)

  • Han, Sang-Hyup;Kim, Heung-Geun;Cha, Honnyong;Chun, Tea-Won;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.1
    • /
    • pp.9-15
    • /
    • 2018
  • This study investigates a bidirectional quasi-Z-source inverter (Bq-ZSI) system with bidirectional power transfer capability and a modified space vector modulation scheme for reducing the ripple of the inductor current. By replacing the diode in the impedance network with an active switch, the power flow can be bidirectional. The average inductor current of the Bq-ZSI network is negative in the regenerative braking mode, thereby regenerating the power. In addition, modified space vector modulation scheme is applied to the Bq-ZSI to control shoot-through time effectively. A 5 kW prototype is built and tested to implement the proposed system. Experimental results show that the Bq-ZSI system is capable of regenerative braking of the induction motor and that the modified space vector modulation method is efficient.

Analysis and Control of Z-Source Inverter using Modified Space Vector Methods (변형 공간벡터방식을 사용한 Z-Source 인버터의 해석 및 제어)

  • Chun, Tae-Won;Tran, Quang-Vinh;Kim, Heung-Gun;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.332-338
    • /
    • 2007
  • In this paper, the three modified space vector modulation methods are suggested in order to control effectively the shoot-through time at Z-source inverter. Both the switching patterns of three modulation methods and the modulation signals with a variation of shoot-through time are analyzed. The optimum modified space vector modulation method is determined by both the control range of the shoot-through time and the symmetry of the switching pattern and modulation signal. The performances of modulation methods are verified with the simulation results with 32-bit DSP.

An Equivalent Carrier-based Implementation of a Modified 24-Sector SVPWM Strategy for Asymmetrical Dual Stator Induction Machines

  • Wang, Kun;You, Xiaojie;Wang, Chenchen
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1336-1345
    • /
    • 2016
  • A modified space vector pulse width modulation (SVPWM) strategy based on vector space decomposition and its equivalent carrier-based PWM realization are proposed in this paper, which is suitable for six-phase asymmetrical dual stator induction machines (DSIMs). A DSIM is composed of two sets of symmetrical three-phase stator windings spatially shifted by 30 electrical degrees and a squirrel-cage type rotor. The proposed SVPWM technique can reduce torque ripples and suppress the harmonic currents flowing in the stator windings. Above all, the equivalent relationship between the proposed SVPWM technique and the carrier-based PWM technique has been demonstrated, which allows for easy implementation by a digital signal processor (DSP). Simulation and experimental results, carried out separately on a simulation system and a 3.0 kW DSIM prototype test bench, are presented and discussed.

Modified Space-Vector Modulation Hysteresis Current Control Method (개선된 공간벡터형 히스테리시스 전류제어기법)

  • Jeong, An-Sik;Park, Ki-Won;Jeong, Seung-Gi
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2529-2533
    • /
    • 1999
  • This paper proposes a modified hysteresis current control method based on space vector modulation. The proposed method differs from former works in that it uses effective voltage vectors instead of zero vectors while not significantly increasing the circuit complexity. The circuit uses outer band that is slightly wider than the usual current limit band (inner band) to detect the phase of current command and thereby the region information. The comparator output signals associated with the inner and outer band are used to determine the proper voltage vector that minimizes the current error and number of switching, with simple logic circuitry. The utilization of effective voltage vector is of particular importance when the ac-side emf is relatively large. Both the simulation and experiment show that the proposed method is more effective than the conventional one that uses zero vectors, in reducing the number of switching over a range of ac-side emf variation.

  • PDF

Output AC Voltage Control of a Three-Phase Z-Source Inverter by the Voltage Gain and Modulation Index Control (전압 이득과 변조지수 제어에 의한 3상 Z-소스 인버터의 출력 교류 전압 제어)

  • Kim, Se-Jin;Jung, Young-Gook;Lim, Young-Cheol;Yang, Seung-Hak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.1996-2005
    • /
    • 2010
  • This paper proposes a new method for constant control of the output AC voltage of a voltage-fed three phase Z-source inverter (ZSI), in case of Z-network DC voltage variation or heavy change of load. The modulation index for the reference output AC voltage of ZSI can be calculated by the basic definition of ZSI, the input DC voltage and capacitor voltage of Z-network. And, the output AC voltage of ZSI is controlled by the modified space vector modulation (SVM) with the calculated modulation index. By the proposed method, the modulation index of output AC voltage is closely following in the reference modulation index. The validity of the proposed method is verified using PSIM simulation. In case which the input DC voltage of ZSI is heavily changed from 100[V] to 70[V] (or to 150[V]) and in case which load is changed from $30[\Omega]$ to $10[\Omega]$, we confirmed that the output AC voltage of ZSI is constantly controlled by the proposed method because the modulation index of ZSI is also simultaneously changed. Finally, FFT and %THD of the output voltage and current of ZSI by the proposed method are analyzed.

Output Voltage Control of Z-Source Inverter by the Detection of the Input DC Voltage and Z-Network Capacitor Voltage (입력 직류 전압과 Z-네트워크 커패시터 전압 검출에 의한 Z-소스 인버터의 출력 전압 제어)

  • Kim, Se-Jin;Jung, Young-Gook;Lim, Young-Cheol;Choi, Joon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.8
    • /
    • pp.1515-1522
    • /
    • 2011
  • This paper proposes the algorithm for the output AC voltage control of Z-source inverter by the detection of the input DC voltage and Z-network capacitor voltage. The actual modulation index of the proposed method is detected by the capacitor voltage in Z-network and input DC voltage of three-phase Z-source inverter. Control modulation index for the output voltage control is calculated by the detected actual modulation index and reference modulation index. And, calculated control modulation index is applied to the modified space vector modulation (SVM) for control the output voltage of Z-source inverter. To verify the validity of the proposed method, PSIM simulation was achieved and a DSP controlled 1[kW] three-phase Z-source inverter was producted. The simulation and experiment were performed under the condition that the load was changed in case of the constant input DC voltage and the input DC voltage was changed in case of the load was constant. As a result, we could know that the output phase voltage of Z-source inverter followed to the reference voltage 70[VRMS] despite the load or the input DC voltage were suddenly changed.

Maximum Boost Space Vector Pulse-Width Modulation Strategy of Z-Source Inverters

  • Kim, Seong Hwan;Park, Jang Hyun
    • Journal of IKEEE
    • /
    • v.19 no.1
    • /
    • pp.73-79
    • /
    • 2015
  • In this paper, maximum boost space vector pulse-width modulation(MBSVPWM) strategy of Z-Source Inverters(ZSIs) is proposed. Conventional space vector pulse-width modulation(SVPWM) method of Voltage Source Inverters(VSIs) is modified to produce unique PWM patterns that realize the maximum boost control of ZSIs. This proposed method minimizes the switching power losses of ZSIs by reducing the numbers of the shoot-through states. Moreover, some switches keep ON state and the switching transitions do not occur during the specific sectors. An experimental system has been built and tested to verify the effectiveness of the proposed strategy.

Modified Direct Torque Control using Algorithm Control of Stator Flux Estimation and Space Vector Modulation Based on Fuzzy Logic Control for Achieving High Performance from Induction Motors

  • Rashag, Hassan Farhan;Koh, S.P.;Abdalla, Ahmed N.;Tan, Nadia M.L.;Chong, K.H.
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.369-380
    • /
    • 2013
  • Direct torque control based on space vector modulation (SVM-DTC) protects the DTC transient merits. Furthermore, it creates better quality steady-state performance in a wide speed range. The modified method of DTC using SVM improves the electrical magnitudes of asynchronous machines, such as minimizing the stator current distortions, the stator flux with electromagnetic torque without ripple, the fast response of the rotor speed, and the constant switching frequency. In this paper, the proposed method is based on two new control strategies for direct torque control with space vector modulation. First, fuzzy logic control is used instead of the PI torque and a PI flux controller to minimizing the torque error and to achieve a constant switching frequency. The voltages in the direct and quadratic reference frame ($V_d$, $V_q$) are achieved by fuzzy logic control. In this scheme, the switching capability of the inverter is fully utilized, which improves the system performance. Second, the close loop of stator flux estimation based on the voltage model and a low pass filter is used to counteract the drawbacks in the open loop of the stator flux such as the problems saturation and dc drift. The response of this new control strategy is compared with DTC-SVM. The experimental and simulation results demonstrate that the proposed control topology outperforms the conventional DTC-SVM in terms of system robustness and eliminating the bad outcome of dc-offset.

New Three-Phase Multilevel Inverter with Shared Power Switches

  • Ping, Hew Wooi;Rahim, Nasrudin Abd.;Jamaludin, Jafferi
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.787-797
    • /
    • 2013
  • Despite the advantages offered by multilevel inverters, one of the main drawbacks that prevents their widespread use is their circuit complexity as the number of power switches employed is usually high. This paper presents a new multilevel inverter topology with a considerable reduction in the number of power switches used through the switch-sharing approach. The fact that the proposed inverter applies two bidirectional power switches for sharing among the three phases does not prevent it from producing seven levels in the line-to-line output voltage waveforms. A modified scheme of space vector modulation via the application of virtual voltage vectors is developed to generate the PWM signals of the power switches. The performance of the proposed inverter is investigated through MATLAB/SIMULINK simulations and is practically tested using a laboratory prototype with a DSP-based modulator. The results demonstrate the satisfactory performance of the inverter and verify the effectiveness of the modulation method.

The Algorithms for Controlling AC Output Voltage of Z-Source Inverter Using Modified SVPWM

  • Tran Quang-Vinh;Chun Tae-Won;Son Jang-Kyung;Hee Lee-Hong;Ahn Jung-Ryol
    • Proceedings of the KIPE Conference
    • /
    • 2004.11a
    • /
    • pp.64-69
    • /
    • 2004
  • This paper deals with an algorithm for controlling ac output voltage of Z-source inverter using Modified SVPWM (abbreviated as MSVPWM). Unlike the conventional space vector pulse width modulation, MSVPWM has one extra shoot-through zero time $T_{sh}$. During shoot-through zero time, both switches in a leg are conducted simultaneously in order to boost inverter output voltage to any desirable value regardless the line voltage. The algorithm to control linearly the capacitor voltage is suggested to improve the performance of Z-source inverter system. The performance of Z-source inverter using above algorithms is demonstrated in simulation results using PSIM. Index terms-Z-source inverter (ZSI), shoot-through time, three-phase carrier-based PWM, space vector PWM (SVPWM), modified space vector PWM (MSVPWM).

  • PDF