This paper proposes a new classification system combining the adaptive feature weighting algorithm using the genetic algorithm and the modified KNN rule. GA is employed to choose the middle value of weights and weights of features for high performance of the system. The modified KNN rule is proposed to estimate the class of test pattern using adaptive feature space. Experiments with the unconstrained handwritten digit database of Concordia University in Canada are conducted to show the performance of the proposed method.
퍼지모델링은 일반적으로 주어진 데이터를 이용하고 퍼지규칙은 입력변수를 선정하고 각 입력변수에 대한 입력공간을 분할함으로써 입력변수 및 공간분할에 의해 확립된다. 퍼지규칙의 전반부는 입력변수, 공간분할 수 및 소속 함수를 선정하고 본 논문에서 후반부는 선형추론 및 변형된 이차식에 의해 다항식함수의 형태로 나타낸다. 전반부 파라미터의 동정은 입출력 데이터의 최소값과 최대값을 이용하는 최소-최대 방법 및 입출력 데이터를 군집으로 형성하는 C-Means 클러스터링 알고리즘을 사용하여 입력공간을 분할한다. 각 규칙의 후반부 파라미터들, 즉 다항식의 계수들의 동정은 표준최소자승법에 의해 수행된다. 본 논문에서 전반부 소속 함수는 사다리꼴형 멤버쉽 함수를 사용하여 입력공간을 분할하고 비선형공정에서 널리 이용되는 가스로데이터를 사용하여 성능을 평가한다.
this paper present an efficient line-drawing algorithm that reduces the amount of space required, Because of its efficiency , this line-drawing algorithm is faster than the Bresenham algorithm or the recursive bisection method. this efficiency was achieved through a new data structure; namely , the modified segment tree (MST). Using the modified segment tree and the distribution rule suggested in this paper, we dra lines without generating the recursive calls used in [3] and without creating the binary operation used in [4]. we also show that line accuracy improves in proportion to the display resolution . In practice, we can significantly improve the algorithm's performance with respect to time and space, This improvement offer an increase in speed, specially with lines at or near horizontal, diagonal. or vertical ; that is, this algorithm requires the time complexity of (n) and the space complexity O(2k+1), where n is the number of pixels and k is a level of the modified segment tree.
In this paper, we discussed a problem for improving the throughput of a crankshaft manufacturing line in an automotive factory in which the budget for purchasing new machines and installing additional buffers is limited. We also considered the constraint of available space for both of machine and buffer. Although this problem seems like a kind of buffer allocation problem, it is different from buffer allocation problem because additional machines are also considered. Thus, it is not easy to calculate the throughput by mathematical model, and therefore simulation model was developed using $ARENA^{(R)}$ for estimating throughput. To determine the investment plan, a modified Arrow Assignment Rule under some constraints was suggested and it was applied to the real case.
This paper is concerned with modified integration algorithm on the strain-space for rate and temperature dependent elasto-plastic constitutive relations in order to obtain more accurate results in numerical implementation. The proposed algorithm is integrated analytically using integration by part and chain rule and then is applied to the 2-stage Lobatto IIIA with second-order accuracy. It has advantage that is able to consider the convective stress rates on the yield surface of the strain-space. Also this paper is carried out the iteration procedure using the Newton-Raphson method to enforce consistency at the end of the step. And the performance of the proposed algorithm for rate and temperature dependent constitutive relation is illustrated by means of analysis of adiabatic shear bands.
새롭게 제안된 공력 설계 절차와 In-house 프로그램을 이용하여 1 MW급 수평축풍력 터빈 블레이드의 형상을 결정하였고, 기존에 개발된 블레이드의 실험 결과와 본 연구에서 제안한 블레이드와의 비교를 통하여 공력 설계에 대한 타당성을 제시하였다. 블레이드의 구조 설계는 Netting Rule과 Rule of Mixture를 적용하여 설계를 진행하였다. 설계된 블레이드의 구조적 안전성은 상업적 유한요소프로그램인 MSC.NASTRAN을 사용하여 다양한 하중에 따라 선형 정적해석, 변형해석, 좌굴해석, 진동모드해석 등을 수행하였다. 최종적으로 Spera가 제시한 실험식을 적용하여 요구된 피로수명에 대해 타당성을 확인하였다.
본 논문에서는 수치적 데이터를 이용하여 규칙을 생성하는 시스템에 대해 순차적인 클러스터링 방법을 제안한다. 단일 클러스터링 기법은 방대하고 복잡한 공간 내에서는 원하는 결과를 얻지 못할 수 있다. 이런 문제점을 해결하기 위해 제안된 방법은 서로 다른 클러스터링 기법을 순차적으로 수행하여 장점들은 활용하고 단점들은 보안하는 형태를 제안하였다. Mountain 클러스터링과 Chen 클러스터링을 이용하여 non-parametric 공간에서 자율적으로 클러스터를 구성하였고, global 공간과 local 공간으로 역할을 분담하여 클러스터를 추정한다. 추정된 클러스터들은 신경회로망이나 퍼지 시스템과 같은 지능 시스템의 구조와 초기 파라미터 결정에 활용될 수 있으며, 확장하여 헬스케어와 의료 분야에서의 결정 제공 시스템의 학습에 도움을 줄 수 있다. 제안된 방법을 유용성을 시뮬레이션을 통해 보이고자 한다.
2.5D C/SiC를 적용한 구조물의 거동 특성을 유한요소해석으로 근사하기 위해 기계적 물성 특성화와 모델링 기법에 관한 연구를 수행하였다. 2.5D C/SiC 소재의 거동 특성을 분석하기 위해 인장시험을 수행하였고 수학적 균질화 기법과 수정된 혼합 법칙을 적용하여 2.5D C/SiC를 구성하는 섬유와 기지의 탄성 물성을 정의하였다. 탄소성 거동을 나타내는 기지는 소성 영역의 거동을 bilinear 함수로 근사하고 시험과 해석의 오차를 최소화하여 등가 항복 강도와 등가 소성 강성을 계산하였다. 그리고 2.5D C/SiC의 RVE를 정의하고 수정된 혼합 법칙을 적용하여 유효강성행렬을 계산하는 과정을 ABAQUS의 User-defined subroutine을 통해 구성하였다. 제안된 과정을 바탕으로 정의된 섬유와 기지의 기계적 물성을 적용하여 유한요소해석을 수행한 결과는 시험의 거동을 잘 근사하고 있음을 확인하였다.
본 논문에서는 유전자 알고리즘을 이용한 새로운 적응적 특징 가중치 방식과 클래스별로 적용된 KNN(Nearest -Neighbor) 규칙을 이용한 새로운 패턴 인식 시스템을 제안한다. 패턴 인식 시스템의 성능을 향상시키기 위하여, 새로운 연산자를 갖는 유전자 알고리즘으로 가중치의 중간값을 결정함으로써 과잉 맞춤(overfitting)을 피하면서, 데이터의 분포에 따라 적절한 특징의 가중치를 찾는 새로운 특징 가중치 알고리즘을 제안한다. 또한, 제안하는 방법은 각각의 클래스를 가장 잘 표현하는 특징 공간들을 개별적으로 찾는다. KNN분류기는 클래스별로 찾은 특징 공간들을 이용하여 클래스에 따라 특징 공간을 변화시켜 미지 패턴의 클래스를 예측한다. 제안된 알고리즘은 Concordia대학의 handwritten numeral database에 적용시켜 그 성능을 확인하였다.
In this paper, we propose Fuzzy Polynomial Neural Networks(FPNN) based on Polynomial Neural Networks(PNN) and Fuzzy Neural Networks(FNN) for model identification of complex and nonlinear systems. The proposed FPNN is generated from the mutually combined structure of both FNN and PNN. The one and the other are considered as the premise part and consequence part of FPNN structure respectively. As the consequence part of FPNN, PNN is based on Group Method of Data Handling(GMDH) method and its structure is similar to Neural Networks. But the structure of PNN is not fixed like in conventional Neural Networks and self-organizing networks that can be generated. FPNN is available effectively for multi-input variables and high-order polynomial according to the combination of FNN with PNN. Accordingly it is possible to consider the nonlinearity characteristics of process and to get better output performance with superb predictive ability. As the premise part of FPNN, FNN uses both the simplified fuzzy inference as fuzzy inference method and error back-propagation algorithm as learning rule. The parameters such as parameters of membership functions, learning rates and momentum coefficients are adjusted using genetic algorithms. And we use two kinds of FNN structure according to the division method of fuzzy space of input variables. One is basic FNN structure and uses fuzzy input space divided by each separated input variable, the other is modified FNN structure and uses fuzzy input space divided by mutually combined input variables. In order to evaluate the performance of proposed models, we use the nonlinear function and traffic route choice process. The results show that the proposed FPNN can produce the model with higher accuracy and more robustness than any other method presented previously. And also performance index related to the approximation and prediction capabilities of model is evaluated and discussed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.