• Title/Summary/Keyword: modified solvothermal process

Search Result 4, Processing Time 0.022 seconds

Synthesis and Characterization of Y2O3 Powders by a Modified Solvothermal Process

  • Jeong, Kwang-Jin;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.78-81
    • /
    • 2012
  • $Y_2O_3$ nanomaterials have been widely used in transparent ceramics and luminescent devices. Recently, many studies have focused on controlling the size and morphology of $Y_2O_3$ in order to obtain better material performance. $Y_2O_3$ powders were prepared under a modified solvothermal condition involving precipitation from metal nitrates with aqueous ammonium hydroxide. The powders were obtained at temperatures at $250^{\circ}C$ after a 6h process. The properties of the $Y_2O_3$ powders were studied as a function of the solvent ratio. The synthesis of $Y_2O_3$ crystalline particles is possible under a modified solvothermal condition in a water/ethylene glycol solution. Solvothermal processing condition parameters including the pH, reaction temperature and solvent ratio, have significant effects on the formation, phase component, morphology and particle size of yttria powders. Ethylene glycol is a versatile, widely used, inexpensive, and safe capping organic molecule for uniform nanoparticles besides as a solvent. The characterization of the synthesized Y2O3 powders were studied by XRD, SEM (FE-SEM) and TG/DSC. An X-ray diffraction analysis of the synthesized powders indicated the formation of the $Y_2O_3$ cubic structure upon calcination. The average crystalline sizes and distribution of the synthesized $Y_2O_3$ powders was less than 2 um and broad, respectively. The synthesized particles were spherical and hexagonal in shape. The morphology of the synthesized powders changed with the water and ethylene glycol ratio. The average size and shape of the synthesized particles could be controlled by adjusting the solvent ratio.

Solvothermal Synthesis and Characterization of Cu3(BTC)2 Tubular Membranes Using Surface Modified Supports (표면 개질된 지지체를 이용한 Cu3(BTC)2 튜브형 분리막의 용매열 합성 및 특성분석)

  • Noh, Seung-Jun;Kim, Jinsoo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.214-218
    • /
    • 2014
  • In this study, nanoporous $Cu_3(BTC)_2$ membranes were synthesized on macroporous alumina tube supports by solvothermal method. It is very difficult to prepare uniform and crack-free $Cu_3(BTC)_2$ layer on macroporous alumina support by in situ solvothermal method. In this study, continuous and crack-free $Cu_3(BTC)_2$ tubular membranes could be obtained by in situ solvothermal process after surface modification of alumina support. The surface modification was conducted by spraying Cu precursor solution on the alumina support heated at $200^{\circ}C$. The prepared $Cu_3(BTC)_2$ tubular membranes were characterized by XRD, FE-SEM and gas permeation experiments. $H_2$ permeance through $5{\mu}m$ thick $Cu_3(BTC)_2$ tubular membrane was calculated to be $7.8{\times}10^{-7}mol/s{\cdot}m^2{\cdot}Pa$ by single gas permeation test, with the ideal selectivities of $H_2/N_2=11.94$, and $H_2/CO_2=12.82$.

Synthesis of Nano-Zirconia by Chemical Process and Its Application to Optical Display (화학적 공정에 의한 나노 지르코니아 합성 및 광학디스플레이 응용)

  • Park, Jung Ju;Kim, Bong Gu;Son, Jeong Hun;Jung, Yeon Gil
    • Korean Journal of Materials Research
    • /
    • v.30 no.11
    • /
    • pp.609-614
    • /
    • 2020
  • 3 mol% yttria-doped stabilized zirconia (3YSZ) is synthesized by a solvothermal process, and its characteristics are investigated using various methods. Also, the dispersibility of synthesized 3YSZ nanoparticles is observed with the species of surface modifier. The 3YSZ nano sol prepared with an optimum condition is employed in prism coating and its properties are evaluated. The synthesized 3YSZ nanoparticles show a globular shape with about 10 to 20 nm crystallite size. The mixed phases with the nano sol show a high specific surface of 178 ㎡/g. The prism sheet coated with the 3YSZ nano sol present an excellent refractive index, transmittance, and luminance; refractive index is 1.603, transmittance is 90.2 %, and luminance of coating film is improved by 5.9 % compared to that of the film without 3YSZ nano sol. It is verified that the surface modified 3YSZ is suitable as the prism sheet for optical displays.

Synthesis of Ceria Nanoparticles Using Supercritical Methanol with Various Surface Modifiers (초임계 메탄올을 이용한 표면개질된 세리아 나노입자의 합성)

  • Ahn, Ki Ho;Shin, Nae-Chul;Kim, Minsoo;Youn, Yong-Suk;Hong, Giyoung;Lee, Youn-Woo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.678-683
    • /
    • 2012
  • Ceria is one of the most important catalytic materials which can be used in three-way catalysts, waste water treatment, petroleum refining, etc. So far, many methods have been studied to produce ceria nanoparticles. In this study, ceria nanoparticles were prepared via solvothermal synthesis using supercritical methanol in short reaction time using a batch reactor. The size of synthesized ceria nanoparticles in supercritical methanol is 6 nm without capping agent, which is smaller than that made in supercritical water at the same conditions of $400^{\circ}C$ and 30 MPa. Size difference results from density and critical point difference between water and methanol and slow reaction rate at the surface of ceria particles in supercritical methanol which reduces crystal growth rate. Several organic compounds were added to modify the surface of ceria nanoparticles, and in-situ surface modification was confirmed by FT-IR and TGA analysis. Surface modified ceria nanoparticles have excellent dispersibility in organic solvent. Size and shape of surface modified ceria particles can be controlled by adjusting molar ratio of modifier to precursor and selection of modifier.