• Title/Summary/Keyword: modified lateral approach

Search Result 45, Processing Time 0.028 seconds

Tactics and Pitfalls of MED(Micro Endoscopic Discectomy) System for Lumbar Disc - For Surgeons Who Wish to Attempt - (요추간반 탈출증에 있어 MED(Microendoscopic Discectomy) System을 이용한 수술의 효율성과 수기)

  • Hong, Hyun Jong;Oh, Seong Hoon;Bak, Kwang Hum;Kim, Jae Min;Kim, Choong Hyun;Kim, Young Soo;Ko, Yong;Oh, Suck Jun;Kim, Kwang Myung;Lee, Sang Gu;Kim, Nam Kyu
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.1
    • /
    • pp.35-43
    • /
    • 2000
  • Objective : Percutaneous lumbar approaches such as arthroscopic discectomy, laser discectomy, and nucleotome remain controversial and have technical limitations to free fragment disc, bony pathology and access to L5-S1, The purpose of this study was to determine efficacy of this new endoscopic system and to report techniques and tactics. Methods : From July 1997 to May 1998, we treated 40 consecutive patients(43 levels) with the MED system. Mean age was 32 years(range ; 18 to 62). There were 30 males and 10 females. All patients had sciatica with SLRT limitation. There were 23 patients with disc herniation at L4-5 and 14 patients at L5-S1. Three patients had 2 level disc herniations. There was one far lateral disc herniation at L4-5. Results : Using modified MacNab criteria, there were 37 excellent results and 3 good result. Most patients were discharged within 3-4 days except 2 patients with dural tearing. There were no other complications. Mean operation time was 1.5 hours(range : 40 minutes to 2.5 hours). Conclusion : The MED system is a reliable approach to lumbar disc herniations. This system combines the advantages of conventional open surgery and a minimally invasive technique. As tactics for the doctors who wish to attempt, "palpate" the lamina by first dilator, identification of interlaminar space by removal of overlying soft tissue and confirmation of the shoulder portion of nerve root before discectomy are important to this procedure. We conclude that lumbar disc herniations can be successfully treated with MED approach.

  • PDF

Minimally Invasive Anterior Decompression Technique without Instrumented Fusion for Huge Ossification of the Posterior Longitudinal Ligament in the Thoracic Spine : Technical Note And Literature Review

  • Yu, Jae Won;Yun, Sang-O;Hsieh, Chang-Sheng;Lee, Sang-Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.5
    • /
    • pp.597-603
    • /
    • 2017
  • Objective : Several surgical methods have been reported for treatment of ossification of the posterior longitudinal ligament (OPLL) in the thoracic spine. Despite rapid innovation of instruments and techniques for spinal surgery, the postoperative outcomes are not always favorable. This article reports a minimally invasive anterior decompression technique without instrumented fusion, which was modified from the conventional procedure. The authors present 2 cases of huge beak-type OPLL. Patients underwent minimally invasive anterior decompression without fusion. This method created a space on the ventral side of the OPLL without violating global thoracic spinal stability. Via this space, the OPLL and anterior lateral side of the dural sac can be seen and manipulated directly. Then, total removal of the OPLL was accomplished. No orthosis was needed. In this article, we share our key technique and concepts for treatment of huge thoracic OPLL. Methods : Case 1. 51-year-old female was referred to our hospital with right lower limb radiating pain and paresis. Thoracic OPLL at T6-7 had been identified at our hospital, and conservative treatment had been tried without success. Case 2. This 54-year-old female with a 6-month history of progressive gait disturbance and bilateral lower extremity radiating pain (right>left) was admitted to our institute. She also had hypoesthesia in both lower legs. Her symptoms had been gradually progressing. Computed tomography scans showed massive OPLL at the T9-10 level. Magnetic resonance imaging of the thoracolumbar spine demonstrated ventral bony masses with severe anterior compression of the spinal cord at the same level. Results : We used this surgical method in 2 patients with a huge beaked-type OPLL in the thoracic level. Complete removal of the OPLL via anterior decompression without instrumented fusion was accomplished. The 1st case had no intraoperative or postoperative complications, and the 2nd case had 1 intraoperative complication (dural tear) and no postoperative complications. There were no residual symptoms of the lower extremities. Conclusion : This surgical technique allows the surgeon to safely and effectively perform minimally invasive anterior decompression without instrumented fusion via a transthoracic approach for thoracic OPLL. It can be applied at the mid and lower level of the thoracic spine and could become a standard procedure for treatment of huge beak-type thoracic OPLL.

Real-Time 3D Ultrasound Imaging Method Using a Cross Array Based on Synthetic Aperture Focusing: II. Linear Wave Front Transmission Approach (합성구경 기반의 교차어레이를 이용한 실시간 3차원 초음파 영상화 기법 : II. 선형파면 송신 방법)

  • 김강식;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.403-414
    • /
    • 2004
  • In the accompanying paper, we proposed a real. time volumetric imaging method using a cross array based on receive dynamic focusing and synthetic aperture focusing along lateral and elevational directions, respetively. But synthetic aperture methods using spherical waves are subject to beam spreading with increasing depth due to the wave diffraction phenomenon. Moreover, since the proposed method uses only one element for each transmission, it has a limited transmit power. To overcome these limitations, we propose a new real. time volumetric imaging method using cross arrays based on synthetic aperture technique with linear wave fronts. In the proposed method, linear wave fronts having different angles on the horizontal plane is transmitted successively from all transmit array elements. On receive, by employing the conventional dynamic focusing and synthetic aperture methods along lateral and elevational directions, respectively, ultrasound waves can be focused effectively at all imaging points. Mathematical analysis and computer simulation results show that the proposed method can provide uniform elevational resolution over a large depth of field. Especially, since the new method can construct a volume image with a limited number of transmit receive events using a full transmit aperture, it is suitable for real-time 3D imaging with high transmit power and volume rate.

Development of Decision Support System for the Design of Steel Frame Structure (강 프레임 구조물 설계를 위한 의사 결정 지원 시스템의 개발)

  • Choi, Byoung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.29-41
    • /
    • 2007
  • Structural design, like other complex decision problems, involves many trade-offs among competing criteria. Although mathematical programming models are becoming increasingly realistic, they often have design limitations, that is, there are often relevant issues that cannot be easily captured. From the understanding of these limitations, a decision-support system is developed that can generate some useful alternatives as well as a single optimum value in the optimization of steel frame structures. The alternatives produced using this system are "good" with respect to modeled objectives, and yet are "different," and are often better, with respect to interesting objectives not present in the model. In this study, we created a decision-support system for designing the most cost-effective moment-resisting steel frame structures for resisting lateral loads without compromising overall stability. The proposed approach considers the cost of steel products and the cost of connections within the design process. This system makes use of an optimization formulation, which was modified to generate alternatives of optimum value, which is the result of the trade-off between the number of moment connections and total cost. This trade-off was achieved by reducing the number of moment connections and rearranging them, using the combination of analysis based on the LRFD code and optimization scheme based on genetic algorithms. To evaluate the usefulness of this system, the alternatives were examined with respect to various design aspects.

Clinical and Radiological Outcomes of Foraminal Decompression Using Unilateral Biportal Endoscopic Spine Surgery for Lumbar Foraminal Stenosis

  • Kim, Ju-Eun;Choi, Dae-Jung;Park, Eugene J.
    • Clinics in Orthopedic Surgery
    • /
    • v.10 no.4
    • /
    • pp.439-447
    • /
    • 2018
  • Background: Since open Wiltse approach allows limited visualization for foraminal stenosis leading to an incomplete decompression, we report the short-term clinical and radiological results of unilateral biportal endoscopic foraminal decompression using $0^{\circ}$ or $30^{\circ}$ endoscopy with better visualization. Methods: We examined 31 patients that underwent surgery for neurological symptoms due to lumbar foraminal stenosis which was refractory to 6 weeks of conservative treatment. All 31 patients underwent unilateral biportal endoscopic far-lateral decompression (UBEFLD). One portal was used for viewing purpose, and the other was for surgical instruments. Unilateral foraminotomy was performed under guidance of $0^{\circ}$ or $30^{\circ}$ endoscopy. Clinical outcomes were analyzed using the modified Macnab criteria, Oswestry disability index, and visual analogue scale. Plain radiographs obtained preoperatively and 1 year postoperatively were compared to analyze the intervertebral angle (IVA), dynamic IVA, percentage of slip, dynamic percentage of slip (gap between the percentage of slip on flexion and extension views), slip angle, disc height index (DHI), and foraminal height index (FHI). Results: The IVA significantly increased from $6.24^{\circ}{\pm}4.27^{\circ}$ to $6.96^{\circ}{\pm}3.58^{\circ}$ at 1 year postoperatively (p = 0.306). The dynamic IVA slightly decreased from $6.27^{\circ}{\pm}3.12^{\circ}$ to $6.04^{\circ}{\pm}2.41^{\circ}$, but the difference was not statistically significant (p = 0.375). The percentage of slip was $3.41%{\pm}5.24%$ preoperatively and $6.01%{\pm}1.43%$ at 1-year follow-up (p = 0.227), showing no significant difference. The preoperative dynamic percentage of slip was $2.90%{\pm}3.37%$; at 1 year postoperatively, it was $3.13%{\pm}4.11%$ (p = 0.720), showing no significant difference. The DHI changed from $34.78%{\pm}9.54%$ preoperatively to $35.05%{\pm}8.83%$ postoperatively, which was not statistically significant (p = 0.837). In addition, the FHI slightly decreased from $55.15%{\pm}9.45%$ preoperatively to $54.56%{\pm}9.86%$ postoperatively, but the results were not statistically significant (p = 0.705). Conclusions: UBEFLD using endoscopy showed a satisfactory clinical outcome after 1-year follow-up and did not induce postoperative segmental spinal instability. It could be a feasible alternative to conventional open decompression or fusion surgery for lumbar foraminal stenosis.