• 제목/요약/키워드: modified interaction integral

검색결과 8건 처리시간 0.02초

Computation of mixed-mode stress intensity factors in functionally graded materials by natural element method

  • Cho, J.R.
    • Steel and Composite Structures
    • /
    • 제31권1호
    • /
    • pp.43-51
    • /
    • 2019
  • This paper is concerned with the numerical calculation of mixed-mode stress intensity factors (SIFs) of 2-D isotropic functionally graded materials (FGMs) by the natural element method (more exactly, Petrov-Galerkin NEM). The spatial variation of elastic modulus in non-homogeneous FGMs is reflected into the modified interaction integral ${\tilde{M}}^{(1,2)}$. The local NEM grid near the crack tip is refined, and the directly approximated strain and stress fields by PG-NEM are enhanced and smoothened by the patch recovery technique. Two numerical examples with the exponentially varying elastic modulus are taken to illustrate the proposed method. The mixed-mode SIFs are parametrically computed with respect to the exponent index in the elastic modulus and external loading and the crack angle and compared with the other reported results. It has been justified from the numerical results that the present method successfully and accurately calculates the mixed-mode stress intensity factors of 2-D non-homogeneous functionally graded materials.

SUS304강의 사이클의존형에서 시간의존형균열성장으로의 천이에 관한 연구 (A Study on Transition From Cycle-dependent to Time-dependent Crack Growth in SUS304 Stainless Steel)

  • 주원식;조석수
    • Journal of Welding and Joining
    • /
    • 제14권1호
    • /
    • pp.38-46
    • /
    • 1996
  • High temperature low cycle fatigue crack growth behavior is investigated over a range of two temperatures and various frequencies in SUS 304 stainless steel. It is found that low frequency and temperature can enhance time-dependent crack growth. With high temperature, low frequency and long crack length, ${\Delta}J_c/{\Delta}J_ f$, the ratio of creep J integral range to fatigue J integral range is increased and time-dependent crack growth is accelerated. Interaction between ${\Delta}J_f$ and ${\Delta}J_c$ is occured at high frequency and low temparature and ${\Delta}J_c$, creep J integral range is fracture mechanical parameter on transition from cycle-dependent to time dependent crack growth in creep temperature region.

  • PDF

A full path assessment approach for vibration serviceability and vibration control of footbridges

  • Zhu, Qiankun;Hui, Xiaoli;Du, Yongfeng;Zhang, Qiong
    • Structural Engineering and Mechanics
    • /
    • 제70권6호
    • /
    • pp.765-779
    • /
    • 2019
  • Most of the existing evaluation criteria of vibration serviceability rely on the peak acceleration of the structure rather than that of the people keeping their own body unmoved on the structure who is the real receiver of structural vibrations. In order to accurately assess the vibration serviceability, therefore, a full path assessment approach of vibration serviceability based on vibration source, path and receiver is not only tentatively proposed in this paper, taking the peak acceleration of receiver into account, but also introduce a probability procedure to provide more instructive information instead of a single value. In fact, semi-rigid supported on both sides of the structure is more consistent with the actual situation than simply supported or clamped due to the application of the prefabricated footbridge structures. So, the footbridge is regarded as a beam with semi-rigid supported on both sides in this paper. The differential quadrature-integral quadrature coupled method is not only to handle different type of boundary conditions, but also after being further modified via the introduction of an approximation procedure in this work, the time-varying system problem caused by human-structure interaction can be solved well. The analytical results of numerical simulations demonstrate that the modified differential quadrature-integral quadrature coupled method has higher reliability and accuracy compared with the mode superposition method. What's more, both of the two different passive control measures, the tuned mass damper and semi-rigid supported, have good performance for reducing vibrations. Most importantly, semi-rigid supported is easier to achieve the objective of reducing vibration compared with tuned mass damper in design stage of structure.

크리이프-피로 상호작용하의 균열성장속도 예측에 관한 연구 (A Study on Prediction of Crack growth Rate Under Creep-Fatigue Interaction)

  • 주원식;조석수
    • 한국해양공학회지
    • /
    • 제9권2호
    • /
    • pp.98-111
    • /
    • 1995
  • High temperature low cycle fatigue shows that cycle-dependent crack growth owing to cyclic plastic deformation occurred simultaneosly with time-dependent crack growth owing to intergranular deformation. Consequently, to estimate crack growth rate uniquely, many to investigators have proposed various kinds of parameters and theories but these could not produce satisfactory results. Therefore the goal of this study is focused on prediction of crack growth rate using predominant damage rule, linear cumulative damage rule and transitional parameter ${\Delta}J_c/{\Delta}J_f$. On the basis of these sinusoidal loading waveform at 600$^{\circ}C$ and 700$^{\circ}C$.

  • PDF

SUS 304鋼 의 크리이프 溫度領域 에 관한 時間依存型 및 사이클依存型 疲勞크랙 傳播 의 遷移 (Transition from Cycle-Dependent to Time-Dependent Fatigue Crack Propagation at Creep Temperature of SUS 304 Steel)

  • 유헌일;주원식
    • 대한기계학회논문집
    • /
    • 제9권5호
    • /
    • pp.539-547
    • /
    • 1985
  • 본 논문에서는 이상과 같은 연구현상을 배경으로 응력비 R.geq.0인 사인응력파 에서도 사이클의존형 크랙전파가 공존하는가, 공존한다면 그 전이를 결정짓는 조건을 구하기 위해, 대표적인 고온용 재료인 SUS 304강을 이용하여 온도 650.deg. C, 대기중에서 반복속도 .nu., 응력비 R, 응력레벨 .sigma.$_{maxo}$등의 실험조건을 바꾸어 고온저사이클 피로실험을 하였다. 또 이 현상의 기초과정을 이해하는데 도움을 주기 위하여 파면 관찰을 행하였다.

원형 고리와와 강체구의 상호작용에 의한 음향장 수치해석 (Numerical Simulation of Acoustic Field Interacting between a Vortex Ring and a Rigid Sphere)

  • 유기완;이덕주
    • 소음진동
    • /
    • 제7권2호
    • /
    • pp.215-222
    • /
    • 1997
  • The flow and acoustic fields due to a vortex ring interaction with a rigid sphere are simulated numerically. The flow field is regarded as three-dimensional inviscid and incompressible. The vorticity is assumed to be concentrated inside the finite core of vortex filament. The vortex filament curve, described by parabolic blending curve function, is used to effectively solve the modified Biot-Savart equation. The interaction between a vortex ring and a rigid sphere using the parabolic blending curve is calculated. The trajectory of the vortex ring is obtained with several different initial positions between the ring and the sphere. The force variations acting on the sphere are calculated by using the boundary integral method. Finally, we can also obtain the acoustic signals at the far field observation positions from the force variations acting on the rigid surface. We can find that the dipole axis of the directivity patterns are rotated during the interacting phenomena.

  • PDF

Mn Thin Film on $BaTiO_3$ Substrate: Modified Electrical and Magnetic Properties

  • Tuan, Duong Anh;Cuong, Tran Viet;Shin, Yooleemi;Cho, Sunglae
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.162-162
    • /
    • 2013
  • Magnetic properties of 3d transition metals were determined by exchange interaction between magnetic ions that was characterized by the exchange integral. Bulk Mn material is one of transition metals that have been well known as an anti-ferromagnetic material due to an anti-parallel spin with negative exchange integral. Here we report on the MBE growth of Mn on $BaTiO_3$ (001) substrate and induced ferromagnetism. The bcc ${\alpha}$-Mn single crystal film has been grown on $BaTiO_3$ (100) substrate. The XRD and Raman results indicated that the structural phase transitions of $BaTiO_3$ substrate induced a lattice distortion at the interface. Consequently, the grown Mn film exhibits ferromagnetism with strong saturation magnetization of 495 emu/$cm^3$ at 320 K. The electrical resistivity of the Mn film strongly depended on the crystal structure of $BaTiO_3$ substrate.

  • PDF

Seasonal Gap Theory for ENSO Phase Locking

  • SOONG-KI KIM;SOON-IL AN
    • 한국기후변화학회지
    • /
    • 제34권14호
    • /
    • pp.5621-5634
    • /
    • 2021
  • The life cycle of El Niño-Southern Oscillation (ENSO) typically follows a seasonal march, with onset in spring, developing during summer, maturing in boreal winter, and decaying over the following spring. This feature is referred to as ENSO phase locking. Recent studies have noted that seasonal modulation of the ENSO growth rate is essential for this process. This study investigates the fundamental effect of a seasonally varying growth rate on ENSO phase locking using a modified seasonally dependent recharge oscillator model. There are two phase locking regimes associated with the strength of the seasonal modulation of growth rate: 1) a weak regime in which only a single peak occurs and 2) a strong regime in which two types of events occur either with a single peak or with a double peak. Notably, there is a seasonal gap in the strong regime, during which the ENSO peak cannot occur because of large-scale ocean-atmosphere coupled processes. We also retrieve a simple analytical solution of the seasonal variance of ENSO, revealing that the variance is governed by the time integral of seasonally varying growth rate. Based on this formulation, we propose a seasonal energy index (SEI) that explains the seasonal gap and provides an intuitive explanation for ENSO phase locking, potentially applicable to global climate model ENSO diagnostics.