• Title/Summary/Keyword: modified form

Search Result 1,223, Processing Time 0.029 seconds

Grouping Parts Based on Group Technology Using a Neural Network (신경망을 이용한 GT 부품군 형성의 자동화)

  • Lee, Sung-Youl
    • IE interfaces
    • /
    • v.11 no.2
    • /
    • pp.119-124
    • /
    • 1998
  • This paper proposes a new part family classification system (IPFACS: Image Processing and Fuzzy ART based Clustering System), which incorporates image processing techniques and a modified fuzzy ART neural network algorithm. IPFACS can classify parts based on geometrical shape and manufacturing attributes, simultaneously. With a proper reduction and normalization of an image data through the image processing methods and adding method in the modified Fuzzy ART, different types of geometrical shape data and manufacturing attribute data can be simultaneously classified in the same system. IPFACS has been tested for an example set of hypothetical parts. The results show that IPFACS provides a good feasible approach to form families based on both geometrical shape and manufacturing attributes.

  • PDF

Etch Resistance of Mask Layer modified by AFM-based Tribo-Nanolithography in Aqueous Solution (AFM 기반 액중 Tribo nanolithography 에서의 마스크 층 내식각성에 관한 연구)

  • Park Jeong-Woo;Lee Deug-Woo;Kawasegi Noritaka;Morita Noboru
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.268-271
    • /
    • 2005
  • Etch resistance of mask layer on silicon substrate modified by AFM-based Tribo-Nanolithography (TNL) in Aqueous Solution in an aqueous solution was demonstrated. n consists or sequential processes, nano-scratching and wet chemical etching. The simple scratching can form a mask layer on the silicon substrate, which acting as an etching mask. For TNL, a specially designed cantilever with diamond tip, allowing the formation of mask layer on silicon substrate easily by a simple scratching process, has been applied instead of conventional silicon cantilever fur scanning. This study demonstrates how the TNL parameters can affect the etch resistance of mask layer, hence introducing a new process of AFM-based maskless nanolithography in aqueous solution.

  • PDF

Fluorescence and Laser Light Scattering Studies of Modified Poly(ethylene-co-methylacrylate0 Ionomers on the Formation of Stable Colloidal Nanoparticles in Aqueous Solution

  • 여상인;우규환
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.10
    • /
    • pp.1054-1059
    • /
    • 1998
  • Fluorescence and dynamic light scattering measurements were applied to the study of formation and structure of aggregated colloidal particles in modified poly(ethylene-co-methylacrylate) ionomers in aqueous solution. Both 8-anillino-l-naphthalene-sulfonic acid (ANS) and pyrene were used as fluorescence probe to obtain the information on the structure of particle surface and inside, respectively. Three different ionomers used in this study started to aggregate at very dilute concentration, 3-8 x 10-6 g/mL. In this study, we demonstrate that the polyethylene ionomers can form stable nanoparticles. The hydrophobic core made of the polyethylene backbone chains is stabilized by the ionic groups on the particle surface. Such a formed stable nanoparticles have a relatively narrow size distribution with an average radius in the range of 27-48 nm, depending on the kind of ionic groups. Once the stable particles are formed, the particle size distributions were nearly constant. This study shows another way to prepare surfactant-free polyethylene nanoparticles.

QoS Evaluation of Streaming Media in the Secure Wireless Access Network (보안 무선엑세스 네트워크에서 스트리밍 미디어의 QoS 평가)

  • Kim, Jong-Woo;Shin, Seung-Wook;Lee, Sang-Duck;Han, Seung-Jo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.2
    • /
    • pp.61-72
    • /
    • 2007
  • With the increasing growth of Internet and wireless IP networks, Multimedia systems need to be envisaged as information resources where users can access anywhere and anytime. However, efficient services in these multimedia systems are open and challenging research problem due to user mobility, limited resources in wireless devices and expensive radio bandwidth. To implement multimedia services over heterogeneous network, the IP header compression scheme can be used for saving bandwidth. In this paper, we present an efficient solution for header compression, which is modified form of ECRTP. It shows an architectural framework adopting modified ECRTP when IP tunneling network using GRE over IPSec is implemented. We have conducted simulations in order to analyze the effects of different header compression techniques while delivering real-time services to the wireless access network through secured IP Network. The impacts on performance have been investigated through a series of experiments.

A modified test for multivariate normality using second-power skewness and kurtosis

  • Namhyun Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.4
    • /
    • pp.423-435
    • /
    • 2023
  • The Jarque and Bera (1980) statistic is one of the well known statistics to test univariate normality. It is based on the sample skewness and kurtosis which are the sample standardized third and fourth moments. Desgagné and de Micheaux (2018) proposed an alternative form of the Jarque-Bera statistic based on the sample second power skewness and kurtosis. In this paper, we generalize the statistic to a multivariate version by considering some data driven directions. They are directions given by the normalized standardized scaled residuals. The statistic is a modified multivariate version of Kim (2021), where the statistic is generalized using an empirical standardization of the scaled residuals of data. A simulation study reveals that the proposed statistic shows better power when the dimension of data is big.

Poroelastic vibrations of FG Porous higher-order shear deformable

  • Jing Li;Fei Tang;Yasser Alashker;Farhan Alhosny
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.503-516
    • /
    • 2023
  • In the current examination, a trigonometric shear deformation theory is hired to govern natural frequencies of a functionally graded porous microplate which is covered by two nanocomposite layers. The properties of the structure are varied based on the specified patterns. Utilizing the modified form of couple stress theory for taking the scale effect into account in conjunction with Hamilton's principle, the motion equations are obtained. Then, they are solved via Fourier series functions as an analytical approach. After confirming the results' accuracy, various parameters' effect on the results is investigated. Designing and manufacturing more efficient structures, especially those that are subjected to multi-physical loads can be accounted as findings of this work.

Effect of Fe-Mn Solid Solution Precursor Addition on Modified AA 7075

  • Min Sang Kim;Dae Young Kim;Young Do Kim;Hyun Joo Choi;Se Hoon Kim
    • Archives of Metallurgy and Materials
    • /
    • v.66 no.3
    • /
    • pp.783-787
    • /
    • 2021
  • This study suggests a new way to modify the size and morphology of Al-Fe phases in modified AA 7075 by using an Fe-Mn solid solution powder as the precursor. When Fe and Mn are added in the form of a solid solution, the diffusion of Fe and Mn toward the Al is delayed, thus altering the chemical composition and morphology of the precipitates. The fine, spherical precipitates are found to provide a good balance between strength and ductility compared to the case where Fe and Mn are separately added.

Study for Optimal Hull Form Design of a High Speed Ro-Pax Ship on Wave-making Resistance Performance (고속 Ro-Pax선형의 조파저항성능 향상을 위한 최적 선형설계에 관한 연구)

  • Park, Dong-Woo;Choi, Hee-Jong
    • Journal of Navigation and Port Research
    • /
    • v.36 no.10
    • /
    • pp.787-793
    • /
    • 2012
  • A hull form design technique to enhance the wave-making resistance performance for a medium size high speed Ro-Pax ship was studied introducing an optimization method and an automatic hull form modification method. SQP(sequential quadratic programming) was applied as the optimization algorithm and the geometry of hull surface was represented and modified using the NURBS(Non-Uniform Rational B-Spline). The wave-making resistance performance as an objective function in the optimization procedure was evaluated using the Rankine source panel method in which nonlinearity of the free surface boundary conditions and the trim and sinkage of the ship was fully taken into account. Using the Ro-Pax ship as a base hull, the hull-form optimization method was applied to obtain the hull shape that produced the lower wave-making resistance. To verify the validity of the hull-form optimization method, the numerical results was compared with the model test results.

A Practical Hull Form Optimization Method Using the Parametric Modification Function (파라메트릭 변환함수를 이용한 선형최적화의 실용화에 관한 연구)

  • Kim, Hee-Jung;Choi, Hee-Jong;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.5
    • /
    • pp.542-550
    • /
    • 2007
  • A geometry modification is one of main keys in achieving a successful optimization. The optimized hull form generated from the geometry modification should be a realistic, faired form from the ship manufacturing point of view. This paper presents a practical hull optimization procedure using a parametric modification function. In the parametric modification function method, the initial ship geometry was easily deformed according to the variations of design parameters. For example, bulbous bow can be modified with several parameters such as bulb area, bulb length, bulb height etc. Design parameters are considered as design variables to modify hull form, which can reduce the number of design variables in optimization process and hence reduce its time cost. To verify the use of the parametric modification function, optimization for KCS was performed at its design speed (FN=0.26) and the wave making resistance is calculated using a well proven potential code with fully nonlinear free surface conditions. The design variables used are key design parameters such as Cp curve, section shape and bulb shape. This study shows that the hull form optimized by the parametric modification function brings 7.6% reduction in wave making resistance. In addition, for verification and comparison purpose, a direct geometry variation method using a bell-shape modification function is used. It is shown that the optimal hull form generated by the bell-shaped modification function is very similar to that produced by the parametric modification function. However, the total running time of the parametric optimization is six times shorter than that of the bell shape modification method, showing the effectiveness and practicalness from a designer point of view in ship yards.

Study on Hull Form Variation of Fore Body Based on Multiple Parametric Modification Curves (다중 파라메트릭 변환곡선 기반 선수 선형 변환기법 연구)

  • Park, Sung-Woo;Kim, Seung-Hyeon;Lee, Inwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.2
    • /
    • pp.96-108
    • /
    • 2022
  • In this paper, we propose a systematic hull form variation technique which automatically satisfies the displacement constraint and guarantees a high level of fairness. This method is possible through multiple parameter correction curves. The present method is to improve the hull form variation method based on parametric modification function and consists of two sub-categories: SAC variation and section lines modification. For SAC variation, the utilization of two B-Spline curves satisfying GC1 condition led to the satisfaction of displacement constraint and high level of fairness at the same time. Section lines modification methods involves in using two fuctions: the first is the waterplane modification function combining two cubic splines. the other function is the sectional area modification function consisting of 2nd order polynomial over the DLWL(Design Load Waterline) and 3rd order polynomial below the DLWL, This function enables not only the fundamental U-V section shape variation but also systematically modified section lines. The present method is expected to be more useful in the hull form optimization process using CFD compared to the existing method.