• Title/Summary/Keyword: modified evolutionary algorithm

Search Result 29, Processing Time 0.061 seconds

Fuzzy Adaptive Modified PSO-Algorithm Assisted to Design of Photonic Crystal Fiber Raman Amplifier

  • Akhlaghi, Majid;Emami, Farzin
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.237-241
    • /
    • 2013
  • This paper presents an efficient evolutionary method to optimize the gain ripple of multi-pumps photonic crystal fiber Raman amplifier using the Fuzzy Adaptive Modified PSO (FAMPSO) algorithm. The original PSO has difficulties in premature convergence, performance and the diversity loss in optimization as well as appropriate tuning of its parameters. The feasibility and effectiveness of the proposed hybrid algorithm is demonstrated and results are compared with the PSO algorithm. It is shown that FAMPSO has a high quality solution, superior convergence characteristics and shorter computation time.

Combined Economic and Emission Dispatch with Valve-point loading of Thermal Generators using Modified NSGA-II

  • Rajkumar, M.;Mahadevan, K.;Kannan, S.;Baskar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.490-498
    • /
    • 2013
  • This paper discusses the application of evolutionary multi-objective optimization algorithms namely Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and Modified NSGA-II (MNSGA-II) for solving the Combined Economic Emission Dispatch (CEED) problem with valve-point loading. The valve-point loading introduce ripples in the input-output characteristics of generating units and make the CEED problem as a non-smooth optimization problem. IEEE 57-bus and IEEE 118-bus systems are taken to validate its effectiveness of NSGA-II and MNSGA-II. To compare the Pareto-front obtained using NSGA-II and MNSGA-II, reference Pareto-front is generated using multiple runs of Real Coded Genetic Algorithm (RCGA) with weighted sum of objectives. Furthermore, three different performance metrics such as convergence, diversity and Inverted Generational Distance (IGD) are calculated for evaluating the closeness of obtained Pareto-fronts. Numerical results reveal that MNSGA-II algorithm performs better than NSGA-II algorithm to solve the CEED problem effectively.

Performance Improvement of Ensemble Speciated Neural Networks using Kullback-Leibler Entropy (Kullback-Leibler 엔트로피를 이용한 종분화 신경망 결합의 성능향상)

  • Kim, Kyung-Joong;Cho, Sung-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.4
    • /
    • pp.152-159
    • /
    • 2002
  • Fitness sharing that shares fitness if calculated distance between individuals is smaller than sharing radius is one of the representative speciation methods and can complement evolutionary algorithm which converges one solution. Recently, there are many researches on designing neural network architecture using evolutionary algorithm but most of them use only the fittest solution in the last generation. In this paper, we elaborate generating diverse neural networks using fitness sharing and combing them to compute outputs then, propose calculating distance between individuals using modified Kullback-Leibler entropy for improvement of fitness sharing performance. In the experiment of Australian credit card assessment, breast cancer, and diabetes in UCI database, proposed method performs better than not only simple average output or Pearson Correlation but also previous published methods.

Optimized AI controller for reinforced concrete frame structures under earthquake excitation

  • Chen, Tim;Crosbie, Robert C.;Anandkumarb, Azita;Melville, Charles;Chan, Jcy
    • Advances in concrete construction
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • This article discusses the issue of optimizing controller design issues, in which the artificial intelligence (AI) evolutionary bat (EB) optimization algorithm is combined with the fuzzy controller in the practical application of the building. The controller of the system design includes different sub-parts such as system initial condition parameters, EB optimal algorithm, fuzzy controller, stability analysis and sensor actuator. The advantage of the design is that for continuous systems with polytypic uncertainties, the integrated H2/H∞ robust output strategy with modified criterion is derived by asymptotically adjusting design parameters. Numerical verification of the time domain and the frequency domain shows that the novel system design provides precise prediction and control of the structural displacement response, which is necessary for the active control structure in the fuzzy model. Due to genetic algorithm (GA), we use a hierarchical conditions of the Hurwitz matrix test technique and the limits of average performance, Hierarchical Fitness Function Structure (HFFS). The dynamic fuzzy controller proposed in this paper is used to find the optimal control force required for active nonlinear control of building structures. This method has achieved successful results in closed system design from the example.

Optimization of long span portal frames using spatially distributed surrogates

  • Zhang, Zhifang;Pan, Jingwen;Fu, Jiyang;Singh, Hemant Kumar;Pi, Yong-Lin;Wu, Jiurong;Rao, Rui
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.227-237
    • /
    • 2017
  • This paper presents optimization of a long-span portal steel frame under dynamic wind loads using a surrogate-assisted evolutionary algorithm. Long-span portal steel frames are often used in low-rise industrial and commercial buildings. The structure needs be able to resist the wind loads, and at the same time it should be as light as possible in order to be cost-effective. In this work, numerical model of a portal steel frame is constructed using structural analysis program (SAP2000), with the web-heights at five locations of I-sections of the columns and rafters as the decision variables. In order to evaluate the performance of a given design under dynamic wind loading, the equivalent static wind load (ESWL) is obtained from a database of wind pressures measured in wind tunnel tests. A modified formulation of the problem compared to the one available in the literature is also presented, considering additional design constraints for practicality. Evolutionary algorithms (EA) are often used to solve such non-linear, black-box problems, but when each design evaluation is computationally expensive (e.g., in this case a SAP2000 simulation), the time taken for optimization using EAs becomes untenable. To overcome this challenge, we employ a surrogate-assisted evolutionary algorithm (SAEA) to expedite the convergence towards the optimum design. The presented SAEA uses multiple spatially distributed surrogate models to approximate the simulations more accurately in lieu of commonly used single global surrogate models. Through rigorous numerical experiments, improvements in results and time savings obtained using SAEA over EA are demonstrated.

Shape Design of Micro Electrostatic Actuator using Multidimensional Design Windows (다차원 설계윈도우 탐색법을 이용한 마이크로 액추에이터 형상설계)

  • Jeong, Min-Jung;Kim, Yeong-Jin;Daisuke Ishihara;Yoshimura, Shinobu;Yagawa, Genki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1796-1801
    • /
    • 2001
  • For micro-machines, very few design methodologies based on optimization hale been developed so far. To overcome the difficulties of design optimization of micro-machines, the search method for multi-dimensional design window (DW)s is proposed. The proposed method is defined as areas of satisfactory design solutions in a design parameter space, using both continuous evolutionary algorithms (CEA) and the modified K-means clustering algorithm . To demonstrate practical performance of the proposed method, it was applied to an optimal shape design of micro electrostatic actuator of optical memory. The shape design problem has 5 design parameters and 5 objective functions, and finally shows 4 specific design shapes and design characters based on the proposed DWs.

New Generation Gap Models for Evolutionary Algorithm in Real Parameter Optimization (실수최적화 진화 알고리즘을 위한 새로운 세대차 모델)

  • Choi, Jun-Seok;Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.1
    • /
    • pp.62-68
    • /
    • 2009
  • Two new generation gap models with modified parent-centric recombination(PCX) operator are proposed. First, the self-adaptation generation gap(SGG) model is a control method that keeps a replaced probability of parents by offspring to a certain level which obtains better performance. Second, virtual cluster generation gap(VCGG) is provided to extend distances among parents using clustering, which causes it to diversify individuals. In this model, distances among parents can be controlled by size of clusters. To demonstrate the effectiveness of our two proposed approaches, experiments for three standard test problems are executed and compared to most competing current approaches, CMA-ES and Generalized Generation Gap(G3) with PCX. It is shown two proposed methods are superior to consistently other approaches in the study.

A Modified Particle Swarm Optimization for Optimal Power Flow

  • Kim, Jong-Yul;Lee, Hwa-Seok;Park, June-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.413-419
    • /
    • 2007
  • The optimal power flow (OPF) problem was introduced by Carpentier in 1962 as a network constrained economic dispatch problem. Since then, it has been intensively studied and widely used in power system operation and planning. In the past few decades, many stochastic optimization methods such as Genetic Algorithm (GA), Evolutionary Programming (EP), and Particle Swarm Optimization (PSO) have been applied to solve the OPF problem. In particular, PSO is a newly proposed population based stochastic optimization algorithm. The main idea behind it is based on the food-searching behavior of birds and fish. Compared with other stochastic optimization methods, PSO has comparable or even superior search performance for some hard optimization problems in real power systems. Nowadays, some modifications such as breeding and selection operators are considered to make the PSO superior and robust. In this paper, we propose the Modified PSO (MPSO), in which the mutation operator of GA is incorporated into the conventional PSO to improve the search performance. To verify the optimal solution searching ability, the proposed approach has been evaluated on an IEEE 3D-bus test system. The results showed that performance of the proposed approach is better than that of the standard PSO.

A modified strategy for DNA coding based genetic algorithm and its experiment

  • Kyungwon Jang;Taechon Ahn;Lee, Dongyoon;Kim, Seonik;Jinhyun Kang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.70.1-70
    • /
    • 2002
  • In the fuzzy applications and theories, it is very important to consider how to design the optimal fuzzy model from short training data, in order to construct the reasonable fuzzy model for identifying the practical process. There are several concerns to be confirmed for efficient fuzzy model design. One of concern is the optimization problem of the fuzzy model. In various applications, the genetic algorithm is widely applied to obtain optimal fuzzy model and other cases that adopt evolutionary mechanism of the nature. If we use natural selection and multiplication operation of the genetic algorithm, early convergence to local minimum can be occurred. In other word, we can find only optimum...

  • PDF

Robot manipulator control using new fuzzy control method with evolutionary algorithm (새로운 퍼지 제어 방식 및 진화알고리즘에 의한 로봇 매니퓰레이터의 제어)

  • 박진현;최영규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.177-180
    • /
    • 1996
  • Fuzzy control systems depend on a number of parameters such as the shape or magnitude of the fuzzy membership functions, etc. Conventional fuzzy reasoning method can not be easily applied to the multi-input multi-output(MIMO) system due to the large number of rules in the rule base. Recently Z. Cao et al have proposed a New Fuzzy Reasoning Method(NFRM) which turned out to be superior to Zadeh's FRM. We have extended the NFRM to handle the MIMO system. However, it is difficult to choose a proper relation matrix of the NFRM. Therefore, we have modified the evolution strategy(ES), which is one of the optimization algorithms, to do efficiently the tuning operation for the extended NFRM. Finally we applied the extended NFRM with the modified ES to tracking control of robot manipulator.

  • PDF