• Title/Summary/Keyword: modified evolutionary algorithm

Search Result 29, Processing Time 0.029 seconds

A New evolutionary Multiobjective Optimization Algorithm based on the Non-domination Direction Information (비지배 방향정보를 이용한 새로운 다목적 진화 알고리즘)

  • Kang, Young-Hoon;Zeungnam Bien
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.103-106
    • /
    • 2000
  • In this paper, we introduce a new evolutionary multiobjective optimization algorithm based on the non-domination direction information, which can be an alternative among several multiobjective evolutionary algorithms. The new evolutionary multiobjective optimization algorithm proposed in this paper will not use the conventional recombination or mutation operators but use the non-domination directions, which are extracted from the non-domination relation among the population. And the problems of the modified sharing algorithms are pointed out and a new sharing algorithm sill be proposed to overcome those problems.

  • PDF

Co-evolution of Fuzzy Controller for the Mobile Robot Control

  • Byun, Kwang-Sub;Park, Chang-Hyun;Sim, Kwee-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.82-85
    • /
    • 2003
  • In this paper, in order to deduce the deep structure of a set of fuzzy rules from the surface structure, we use co-evolutionary algorithm based on modified Nash GA. This algorithm coevolves membership functions in antecedents and parameters in consequents of fuzzy rules. We demonstrate this co-evolutionary algorithm and apply to the mobile robot control. From the result of simulation, we compare modified Nash GA with the other co-evolution algorithms and verify the efficacy of this algorithm through application to fuzzy systems.

  • PDF

PSSs and SVC Damping Controllers Design to Mitigate Low Frequency Oscillations Problem in a Multi-machine Power System

  • Darabian, Mohsen;Jalilvand, Abolfazl
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1873-1881
    • /
    • 2014
  • This paper deals with the design of multi-machine power system stabilizers (PSSs) and Static var compensator (SVC) using Modified shuffled frog leaping algorithm (MSFLA). The effectiveness of the proposed scheme for optimal setting of the PSSs and SVC controllers has been attended. The PSSs and SVC controllers designing is converted to an optimization problem in which the speed deviations between generators are involved. In order to compare the capability of PSS and SVC, they are designed independently once, and in a coordinated mode once again. The proposed method is applied on a multi-machine power system under different operating conditions and disturbances to confirm the effectiveness of it. The results of tuned PSS controller based on MSFLA (MSFLAPSS) and tuned SVC controller based on MSFLA (MSFLA SVC) are compared with the Strength pareto evolutionary algorithm (SPEA) and Particle swarm optimization (PSO) based optimized PSS and SVC through some performance to reveal its strong performance.

Optimization of Polynomial Neural Networks: An Evolutionary Approach (다항식 뉴럴 네트워크의 최적화: 진화론적 방법)

  • Kim Dong-Won;Park Gwi-Tae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.7
    • /
    • pp.424-433
    • /
    • 2003
  • Evolutionary design related to the optimal design of Polynomial Neural Networks (PNNs) structure for model identification of complex and nonlinear system is studied in this paper. The PNN structure is consisted of layers and nodes like conventional neural networks but is not fixed and can be changable according to the system environments. three types of polynomials such as linear, quadratic, and modified quadratic is used in each node that is connected with various kinds of multi-variable inputs. Inputs and order of polynomials in each node are very important element for the performance of model. In most cases these factors are decided by the background information and trial and error of designer. For the high reliability and good performance of the PNN, the factors must be decided according to a logical and systematic way. In the paper evolutionary algorithm is applied to choose the optimal input variables and order. Evolutionary (genetic) algorithm is a random search optimization technique. The evolved PNN with optimally chosen input variables and order is not fixed in advance but becomes fully optimized automatically during the identification process. Gas furnace and pH neutralization processes are used in conventional PNN version are modeled. It shows that the designed PNN architecture with evolutionary structure optimization can produce the model with higher accuracy than previous PNN and other works.

Optimization of Polynomial Neural Networks: An Evolutionary Approach (다항식 뉴럴 네트워크의 최적화 : 진화론적 방법)

  • Kim, Dong Won;Park, Gwi Tae
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.7
    • /
    • pp.424-424
    • /
    • 2003
  • Evolutionary design related to the optimal design of Polynomial Neural Networks (PNNs) structure for model identification of complex and nonlinear system is studied in this paper. The PNN structure is consisted of layers and nodes like conventional neural networks but is not fixed and can be changable according to the system environments. three types of polynomials such as linear, quadratic, and modified quadratic is used in each node that is connected with various kinds of multi-variable inputs. Inputs and order of polynomials in each node are very important element for the performance of model. In most cases these factors are decided by the background information and trial and error of designer. For the high reliability and good performance of the PNN, the factors must be decided according to a logical and systematic way. In the paper evolutionary algorithm is applied to choose the optimal input variables and order. Evolutionary (genetic) algorithm is a random search optimization technique. The evolved PNN with optimally chosen input variables and order is not fixed in advance but becomes fully optimized automatically during the identification process. Gas furnace and pH neutralization processes are used in conventional PNN version are modeled. It shows that the designed PNN architecture with evolutionary structure optimization can produce the model with higher accuracy than previous PNN and other works.

Evolutionary Design of a Fuzzy Logic Controller for Multi-Agent Systems

  • Jeong, Il-Kwon;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.507-512
    • /
    • 1998
  • It is an interesting area in the field of artificial intelligence to and an analytic model of cooperative structure for multi-agent system accomplishing a given task. Usually it is difficult to design controllers for multi-agent systems without a comprehensive knowledge about the system. One of the way to overcome this limitation is to implement an evolutionary approach to design the controllers. This paper introduces the use of a genetic algorithm to discover a fuzzy logic controller with rules that govern emergent co-operative behavior: A modified genetic algorithm was applied to automating the discovery of a fuzzy logic controller jot multi-agents playing a pursuit game. Simulation results indicate that, given the complexity of the problem, an evolutionary approach to and the fuzzy logic controller seems to be promising.

  • PDF

Bayesian ballast damage detection utilizing a modified evolutionary algorithm

  • Hu, Qin;Lam, Heung Fai;Zhu, Hong Ping;Alabi, Stephen Adeyemi
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.435-448
    • /
    • 2018
  • This paper reports the development of a theoretically rigorous method for permanent way engineers to assess the condition of railway ballast under a concrete sleeper with the potential to be extended to a smart system for long-term health monitoring of railway ballast. Owing to the uncertainties induced by the problems of modeling error and measurement noise, the Bayesian approach was followed in the development. After the selection of the most plausible model class for describing the damage status of the rail-sleeper-ballast system, Bayesian model updating is adopted to calculate the posterior PDF of the ballast stiffness at various regions under the sleeper. An obvious drop in ballast stiffness at a region under the sleeper is an evidence of ballast damage. In model updating, the model that can minimize the discrepancy between the measured and model-predicted modal parameters can be considered as the most probable model for calculating the posterior PDF under the Bayesian framework. To address the problems of non-uniqueness and local minima in the model updating process, a two-stage hybrid optimization method was developed. The modified evolutionary algorithm was developed in the first stage to identify the important regions in the parameter space and resulting in a set of initial trials for deterministic optimization to locate all most probable models in the second stage. The proposed methodology was numerically and experimentally verified. Using the identified model, a series of comprehensive numerical case studies was carried out to investigate the effects of data quantity and quality on the results of ballast damage detection. Difficulties to be overcome before the proposed method can be extended to a long-term ballast monitoring system are discussed in the conclusion.

Improvement of Evolutionary Computation of Genetic Algorithm using SVM

  • Cho, Byung-Sun;Han, So-Hee;Son, Sung-Han;Kim, Jin-Su;Park, Kang-Bak
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1513-1516
    • /
    • 2003
  • Genetic algorithm is well known as a stochastic searching method. In this paper, a modified genetic algorithm using 'Suppor Vector Machines (SVM)' is proposed. SVM is used to reduce the number of calling the objective function which in turn accelerate the searching speed compared to the conventional GA.

  • PDF

Two Phase Algorithm in Optimal Control

  • Park, Chungsik;Lee, Tai-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.252-255
    • /
    • 1999
  • Feed rate in the fed-batch reactor is the most important control variable in optimizing the reactor performance. Exact solution can be obtained only for limited cases of simple reactor. The complexity of the model equations makes it extremely difficult to solve fur the general class of system models. Evolutionary programming method is proposed to get the information of the profile types, and the final profile is calculated by that information. The modified evolutionary programming method is used to get the more optimal profiles and it is demonstrated that proposed method can solve a wide range of optimal control problems.

  • PDF

A modified Genetic Algorithm using SVM for PID Gain Optimization

  • Cho, Byung-Sun;Han, So-Hee;Son, Sung-Han;Kim, Jin-Su;Park, Kang-Bak;Tsuji, Teruo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.686-689
    • /
    • 2004
  • Genetic algorithm is well known for stochastic searching method in imitating natural phenomena. In recent times, studies have been conducted in improving conventional evolutionary computation speed and promoting precision. This paper presents an approach to optimize PID controller gains with the application of modified Genetic Algorithm using Support Vector Machine (SVMGA). That is, we aim to explore optimum parameters of PID controller using SVMGA. Simulation results are given to compare to those of tuning methods, based on Simple Genetic Algorithm and Ziegler-Nicholas tuning method.

  • PDF