• 제목/요약/키워드: modified embedded element

검색결과 19건 처리시간 0.023초

Implementation of bond-slip effects on behaviour of slabs in structures

  • Mousavi, S.S.;Dehestani, M.
    • Computers and Concrete
    • /
    • 제16권2호
    • /
    • pp.311-327
    • /
    • 2015
  • Employing discrete elements for considering bond-slip effects in reinforced concrete structures is very time consuming. In this study, a new modified embedded element method is used to consider the bond-slip phenomenon in structural behavior of reinforced concrete structures. A comprehensive parametric study of RC slabs is performed to determine influence of different variables on structural behavior. The parametric study includes a set of simple models accompanied with complex models such as multi-storey buildings. The procedure includes the decrease in the effective stiffness of steel bar in the layered model. Validation of the proposed model with existing experimental results demonstrates that the model is capable of considering the bond-slip effects in embedded elements. Results demonstrate the significant effect of bond-slip on total behavior of structural members. Concrete characteristic strengths, steel yield stress, bar diameter, concrete coverage and reinforcement ratios are the parameters considered in the parametric study. Results revealed that the overall behavior of slab is significantly affected by bar diameter compared with other parameters. Variation of steel yield stress has insignificant impact in static response of RC slabs; however, its effect in cyclic behavior is important.

Stress resultant model for ultimate load design of reinforced-concrete frames: combined axial force and bending moment

  • Pham, Ba-Hung;Davenne, Luc;Brancherie, Delphine;Ibrahimbegovic, Adnan
    • Computers and Concrete
    • /
    • 제7권4호
    • /
    • pp.303-315
    • /
    • 2010
  • In this paper, we present a new finite Timoshenko beam element with a model for ultimate load computation of reinforced concrete frames. The proposed model combines the descriptions of the diffuse plastic failure in the beam-column followed by the creation of plastic hinges due to the failure or collapse of the concrete and or the re-bars. A modified multi-scale analysis is performed in order to identify the parameters for stress-resultant-based macro model, which is used to described the behavior of the Timoshenko beam element. The micro-scale is described by using the multi-fiber elements with embedded strain discontinuities in mode 1, which would typically be triggered by bending failure mode. A special attention is paid to the influence of the axial force on the bending moment - rotation response, especially for the columns behavior computation.

Embedded smart GFRP reinforcements for monitoring reinforced concrete flexural components

  • Georgiades, Anastasis V.;Saha, Gobinda C.;Kalamkarov, Alexander L.;Rokkam, Srujan K.;Newhook, John P.;Challagulla, Krishna S.
    • Smart Structures and Systems
    • /
    • 제1권4호
    • /
    • pp.369-384
    • /
    • 2005
  • The main objectives of this paper are to demonstrate the feasibility of using newly developed smart GFRP reinforcements to effectively monitor reinforced concrete beams subjected to flexural and creep loads, and to develop non-linear numerical models to predict the behavior of these beams. The smart glass fiber-reinforced polymer (GFRP) rebars are fabricated using a modified pultrusion process, which allows the simultaneous embeddement of Fabry-Perot fiber-optic sensors within them. Two beams are subjected to static and repeated loads (until failure), and a third one is under long-term investigation for assessment of its creep behavior. The accuracy and reliability of the strain readings from the embedded sensors are verified by comparison with corresponding readings from surface attached electrical strain gages. Nonlinear finite element modeling of the smart concrete beams is subsequently performed. These models are shown to be effective in predicting various parameters of interest such as crack patterns, failure loads, strains and stresses. The strain values computed by these numerical models agree well with corresponding readings from the embedded fiber-optic sensors.

2-D meso-scale complex fracture modeling of concrete with embedded cohesive elements

  • Shen, Mingyan;Shi, Zheng;Zhao, Chao;Zhong, Xingu;Liu, Bo;Shu, Xiaojuan
    • Computers and Concrete
    • /
    • 제24권3호
    • /
    • pp.207-222
    • /
    • 2019
  • This paper has presented an effective and accurate meso-scale finite element model for simulating the fracture process of concrete under compression-shear loading. In the proposed model, concrete is parted into four important phases: aggregates, cement matrix, interfacial transition zone (ITZ), and the initial defects. Aggregate particles were modelled as randomly distributed polygons with a varying size according to the sieve curve developed by Fuller and Thompson. With regard to initial defects, only voids are considered. Cohesive elements with zero thickness are inserted into the initial mesh of cement matrix and along the interface between aggregate and cement matrix to simulate the cracking process of concrete. The constitutive model provided by ABAQUS is modified based on Wang's experiment and used to describe the failure behaviour of cohesive elements. User defined programs for aggregate delivery, cohesive element insertion and modified facture constitutive model are developed based on Python language, and embedded into the commercial FEM package ABAQUS. The effectiveness and accuracy of the proposed model are firstly identified by comparing the numerical results with the experimental ones, and then it is used to investigate the effect of meso-structure on the macro behavior of concrete. The shear strength of concrete under different pressures is also involved in this study, which could provide a reference for the macroscopic simulation of concrete component under shear force.

히트 파이프가 내장된 통신위성용 탑재체 패널의 해석모델 개선 (Model Updating of an Equipment Panel with Embedded Heat Pipes)

  • 양군호;최성봉;김흥배;문상무
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.114-121
    • /
    • 1998
  • This paper presents the model updating of an equipment panel by using modal test and sensitivity analysis. The equipment panel is one of the major structures of communication satellite, on which broadcasting and communication equipments are mounted. For high rigidity and light weight, the panel was designed as an aluminum honeycomb sandwich panel. In addition, heat pipes were embedded in the panel for thermal control. It is essential to improve the finite element model of a satellite by using modal test in order to verify the satellite is designed with adequate margin under launch environment. In this paper, Young's modulus of aluminum facesheet was selected as a modified parameter by sensitivity analysis. The effect of rotational springs of boundary points was also considered.

  • PDF

어플리케이션의 가상 메모리 보호를 위한 연구 (A Study for Protecting the Virtual Memory of Applications)

  • 김동율;문종섭
    • 대한임베디드공학회논문지
    • /
    • 제11권6호
    • /
    • pp.335-341
    • /
    • 2016
  • As information technology advances rapidly, various smart devices are becoming an essential element in our lives. Smart devices are providing services to users through applications up on the operating system. Operating systems have a variety of rules, such as scheduling applications and controlling hardwares. Among those rules, it is significant to protect private information in the information-oriented society. Therefore, isolation task, that makes certain memory space separated for each application, should highly be guaranteed. However, modern operating system offers the function to access the memory space from other applications for the sake of debugging. If this ability is misused, private information can be leaked or modified. Even though the access authority to memory is strictly managed, there exist cases found exploited. In this paper, we analyze the problems of the function provided in the Android environment that is the most popular and opened operating system. Also, we discuss how to avoid such kind of problems and verify with experiments.

히트 파이프가 내장된 통신위성용 탑재체 패널의 해석모델 개선 (Model Updating of an Equipment Panel with Embedded Heat Pipes)

  • 양군호;최성봉;김홍배;문상무
    • 소음진동
    • /
    • 제9권2호
    • /
    • pp.248-257
    • /
    • 1999
  • This paper presents the model updating of an equipment panel by using modal test and sensitivity analysis. The equipment panel is one of the major structures of communication satelite, on which broadcasting and communication equipments are mounted. For high rigidity and light weight, the panel was designed as an aluminum honeycomb sandwich panel. In addition, heat pipes were embedded in the panel for thermal control. It is essential to improve the finite element model of a spacecraft structure by using modal test in order to verify that the satellite is designed and fabricated with adequate margin under launch environment. In this paper, Young's modulus of aluminumfacesheet was selected as a modified parameter in the sensitivity analysis. The effect of boundary conditions on model improvement was also investigated.

  • PDF

엔진 커넥팅로드의 좌굴평가에 대한 연구 (Study of Buckling Evaluation for the connecting rod of the engine)

  • 이문규;문희욱;이형일;이태수;신성원;장훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.677-680
    • /
    • 2004
  • This study investigates the buckling evaluation of connecting rods used in the diesel engine through finite element analysis. The Rankine formula, which is modified from classical Euler‘s formula, has been widely accepted in automotive industry to evaluate the buckling of connecting rods. Apparently, this formula is most suitable for the straight and idealized rod shape, and over-simplifies the geometric complexity associated with connecting rods. The subspace iteration method in FEA is used to predict the critical buckling stress of a connecting rod with certain slenderness ratio. To create models with various slenderness ratios for shank portion in the rod, the automatic meshing preprocessor was implemented. Results from FEA were verified by the experiments, in which the embedded strain gages measured for the connecting rod running at 4000rpm. The result indicates that the buckling prediction curve through FEA and experiment is effectively different from the curve of classical Rankine formula.

  • PDF

Ratcheting assessment of austenitic steel samples at room and elevated temperatures through use of Ahmadzadeh-Varvani Hardening rule

  • Xiaohui Chen;Lang Lang;Hongru Liu
    • Structural Engineering and Mechanics
    • /
    • 제87권6호
    • /
    • pp.601-614
    • /
    • 2023
  • In this study, the uniaxial ratcheting effect of Z2CND18.12N austenitic stainless steel at room and elevated temperatures is firstly simulated based on the Ahmadzadeh-Varvani hardening rule (A-V model), which is embedded into the finite element software ABAQUS by writing the user material subroutine UMAT. The results show that the predicted results of A-V model are lower than the experimental data, and the A-V model is difficult to control ratcheting strain rate. In order to improve the predictive ability of the A-V model, the parameter γ2 of the A-V model is modified using the isotropic hardening criterion, and the extended A-V model is proposed. Comparing the predicted results of the above two models with the experimental data, it is shown that the prediction results of the extended A-V model are in good agreement with the experimental data.

Nonlinear finite element analysis of high strength concrete slabs

  • Smadi, M.M.;Belakhdar, K.A.
    • Computers and Concrete
    • /
    • 제4권3호
    • /
    • pp.187-206
    • /
    • 2007
  • A rational three-dimensional nonlinear finite element model is described and implemented for evaluating the behavior of high strength concrete slabs under transverse load. The concrete was idealized by using twenty-nodded isoparametric brick elements with embedded reinforcements. The concrete material modeling allows for normal (NSC) and high strength concrete (HSC), which was calibrated based on experimental data. The behavior of concrete in compression is simulated by an elastoplastic work-hardening model, and in tension a suitable post-cracking model based on tension stiffening and shear retention models are employed. The nonlinear equations have been solved using the incremental iterative technique based on the modified Newton-Raphson method. The FE formulation and material modeling is implemented into a finite element code in order to carry out the numerical study and to predict the behavior up to ultimate conditions of various slabs under transverse loads. The validity of the theoretical formulations and the program used was verified through comparison with available experimental data, and the agreement has proven to be very good. A parametric study has been also carried out to investigate the influence of different material and geometric properties on the behavior of HSC slabs. Influencing factors, such as concrete strength, steel ratio, aspect ratio, and support conditions on the load-deflection characteristics, concrete and steel stresses and strains were investigated.