• Title/Summary/Keyword: modified electrodes

Search Result 245, Processing Time 0.024 seconds

Determination of Mercury at Electrodes Modified with Poly-$[Ru(v-bpy)_3]^{2+}$ Incorporating Amino Acids (몇 가지 아미노산으로 변성한 $[Ru(v-bpy)_3]^{2+}$ 고분자 피막 전극을 이용한 수은의 정량)

  • Cha, Seong Keuk
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.8
    • /
    • pp.542-548
    • /
    • 1996
  • Electrodes modified with threonine, methionine and serine as ligands, which are incorporated by ion exchange into a polycationic film of electropolymerized $[Ru(v-bpy)_3]^{2+}$, have been employed in the determination of mercury in solution. The redox response of the surface-immobilized mercury/ligand complex was used as the analytical signal. When the polymeric film was electropolymerized, the supporting electrolytes were TBAP and $KPF_6$ to compare the morphology and anodic stripping of resulted polymer electrodes. At the case of the latter, the film had high porosity to give an easy incorporation of dopant anions into polymeric film matrix and a high sensitivity in determination of mercury ion. Especially, this polymer modified electrode exhibited possibility of multiple use in mercury determination over ten times. In all cases, calibration curves which were plotted by log of the surface coverage-normalized redox response vs. log[Hg] exhibited an excellent correlation (r=0.99) for mercury concentrations ranging from 1.0{\times}10^{-8}{\sim}1.0{\times}10^{-2}M$. At these curves relative standard deviation was 5∼8% and saturation response was not observed at high concentration region. Serine of the employed ligands had the best sensitivity in analytical application, which had greater stability constant in forming a complex with mercury than others as $pK_{Hg}=8.54$. The formation constants of threonine and methionine were respectively 7.04 and 7.80.

  • PDF

Selective Monitoring of Rutin and Quercetin based on a Novel Multi-wall Carbon Nanotube-coated Glassy Carbon Electrode Modified with Microbial Carbohydrates α-Cyclosophorohexadecaose and Succinoglycan Monomer M3

  • Jin, Joon-Hyung;Cho, Eun-Ae;Kwon, Chan-Ho;Jung, Seun-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1897-1901
    • /
    • 2010
  • Multi-wall carbon nanotube (MWNT)-modified glassy carbon electrodes (GCE) were prepared for simultaneous determination of rutin and quercetin. Microbial carbohydrates, $\alpha$-cyclosophorohexadecaose ($\alpha$-C16) and succinoglycan monomer M3 (M3) were doped into MWNTs to prepare a $\alpha$-C16-doped MWNT-modified GCE (($\alpha$-C16 + MWNTs)/GCE) and a M3-doped MWNT-modified GCE ((M3 + MWNTs)/GCE), respectively. The sensitivities of the ($\alpha$-C16 + MWNTs)/GCE to rutin and quercetin were 34.7 ${\mu}A\cdot{\mu}M^{-1}{\cdot}cm^{-2}$ and 18.3 ${\mu}A\cdot{\mu}M^{-1}{\cdot}cm^{-2}$, respectively, in a linear range of $2\sim8{\mu}M$ at pH 7.2. The sensitivities of the (M3 + MWNTs)/GCE was 2.44 ${\mu}A\cdot{\mu}M^{-1}{\cdot}cm^{-2}$ for rutin and 7.19 ${\mu}A\cdot{\mu}M^{-1}{\cdot}cm^{-2}$ for quercetin without interference.

Amperometric Determination of Urea Using Enzyme-Modified Carbon Paste Electrode

  • Yang, Jae-Kyeong;Ha, Kwang-Soo;Baek, Hyun-Sook;Lee, Shim-Sung;Seo, Moo-Lyong
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.10
    • /
    • pp.1499-1502
    • /
    • 2004
  • An amperometric biosensor based on carbon paste electrodes (CPEs) for the determination of urea was constructed by enzyme (urease/GL-DH)-modified method. Urea was hydrolyzed to ${NH_4}^+$ by catalyzing urease onto the enzyme-modified electrode surface in sample solution. In the presence of ${\alpha}$-ketoglutarate and reduced nicotinamide adenine dinucleotide(NADH), a liberated ${NH_4}^+$ produce to L-glutamate and $NAD^+$ by Lglutamate dehydrogenase (GL-DH). After the chemical reaction was proceeded, the electrochemical reaction was occurred that an excess of the NADH was oxidized to $NAD^+$. The oxidation current of NADH was monitored at +1.10 volt vs. Ag/AgCl. An optimum conditions of biosensor were investigated: The optimum pH range for catalyzed hydrolysis reaction of urea was pH 7.0-7.4. The linear response range and detection limit were $2.0\;{\times}\;10^{-5}{\sim}2.0\;{\times}\;10^{-4}M\;and\;5.0\;{\times}\;10^{-6}M$, respectively. Another physiological species did not interfere, except L-ascorbic acid.

The Prototype Development II of an Engine Oil Deterioration Sensor Installed Inside an Oil Filter (오일필터 일체형 엔진오일퇴화감지센서 시작품 개발II)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.24 no.4
    • /
    • pp.170-178
    • /
    • 2008
  • In this paper, it is described how the problems appeared at the previous proto type sensor are improved. As changing the pressure and temperature of engine oil in a test rig, the modified sensor is tested. Then, the measured results of capacitance and the corresponding dielectric constants under various temperatures and pressures are shown. It turns out that the electrical signal gotten from the electrodes of newly developed sensor can be more stable under the various operating conditions.

The effect of compressibility on breakdown and modification of the surface roughness factor in compressed $SF_8$

  • Lee, Dong-In
    • 전기의세계
    • /
    • v.27 no.1
    • /
    • pp.45-48
    • /
    • 1978
  • A pressure dependence in the value of Es/p at a constant pd is observed in sulphur hexafluoride at pressures in excess of about one bar. This is explained in terms of the non-idealgas behavior of SF$_{6}$ which has a significant influence on the interpretation of electrical breakdown of this gas. The criterions for breakdown at low pressures and in the presence of rough electrodes are modified to allow this phenomeneon.n.

  • PDF

Modified regularized Newton-Raphson algorithm for Electrical Impedance Tomography in Region Of Interest

  • Nam, Il-Hwan;Kang, Byung-Chae;Kim, Ji-Hun;Choi, Bong-Yeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.134-137
    • /
    • 2003
  • Newton-Raphson is most used algorithm in EIT(electrical impedance tomography), cross-sectional distribution of resistivity is reconstructed by mean of both generating and sensing electrodes attached onto the surface of the object. EIT has been suffered from the severe ill-posedness which is caused by the inherent low sensitivity of boundary measurements to any changes of internal resistivity values. In this paper, we propose modified cost function and weighting factor that compensate for low sensitivity between boundary measurements and internal resistivity and improve performance of Newton-Raphson for EIT in region of interest.

  • PDF

Differential Pulse Voltammetry of Lead(II) ton at Nation- EDTA-Glycerol Modified Glassy Carbon Electrodes (Nation-EDTA Glycerol이 수식된 유리탄소전극에서 납(II) 이온의 펄스차이전압전류법)

  • 박상희;박찬주;박은희;고영춘;정근호
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.5
    • /
    • pp.53-58
    • /
    • 2002
  • A method for the determination of lead(II) ion using a nafion-EDTA(ethylene diamine tetraacetic acid)-glycerol modified glassy carbon electrode was proposed. Lead(II) ion is accumulated at the electrode by complexation and electrostatic attraction with nafion-EDTA-glycerol and detected at -0.560$\pm$0.015V (vs. Ag/AgCl) by differential pulse voltammetry. For the determination of lead(II) ion, a standard calibration curve if obtained from 10$^{-9}$ M lead(II) ion to 10$^{-7}$ M, and the detection limit(3s) is as low as 5.0$\times$10$^{-10}$ M.

Voltammetric Determination of Ag(I) ion using Carbon Paste Electrode Modified with $Ph_2O_2S_3$ ($Ph_2O_2S_3$로 변성된 탄소반죽전극에 의한 Ag(I) 이온의 전압-전류법적 정량)

  • Lee, Ihn Chong
    • Analytical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.171-175
    • /
    • 1999
  • Carbon paste electrodes, modified with podands containing more than two sulfur atoms, have been employed for the voltammetric determination of Ag(I) ion from aqueous solution. The voltammetric response was characterized with respect to paste composition, preconcentration method, kind of anion, variation of pH, Ag(I) ion concentration, and possible interferences. Linear calibration curves were obtained for Ag(I) ion concentration ranging from $1.0{\times}10^{-6}$ to $9.0{\times}10^{-5}M$, and detection limit was $5.0{\times}10^{-7}M$.

  • PDF

Voltammetric Determination of Ag(I) ion with Carbon Paste Electrode Modified with Macrocyclic Ligand Containing Oxygen and Nitrogen as Ligating Atoms (주게원자로 산소와 질소를 포함하는 거대고리 리간드로 변성된 탄소반죽전극에 의한 Ag(I) 이온의 전압-전류법적 정량)

  • Lee, Ihn Chong
    • Analytical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.91-95
    • /
    • 2002
  • Carbon paste electrodes, modified with 5,6,14,15-dibenzo-1,4-dioxa-8,12-diazacyclopentadeca-5,14-diene containing different ligating atoms of oxygen and nitrogen, have been employed for the voltammetric determination of Ag(I) ion from aqueous solution. The voltammetric response was characterized with respect to paste composition, preconcentration method, kind of anion, variation of pH, Ag(I) ion concentration, and possible interferences. Linear calibration curves were obtained for Ag(I) ion concentration ranging from $3.0{\times}10^{-6}M$ to $8.0{\times}10^{-5}M$, and detection limit was $8.5{\times}10^{-7}M$.