• Title/Summary/Keyword: modified base materials

Search Result 85, Processing Time 0.028 seconds

Preparation and Properties of Silicone-Modified Epoxy Coating Materials (실리콘 변성 에폭시 코팅 액의 제조와 물성)

  • Kim, Jin Kyung;Bak, Seung Woo;Hwang, Hee Nam;Kang, Doo Whan;Kang, Ho Jong
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.352-356
    • /
    • 2014
  • PDMS modified epoxy resin with epoxy group (EMPDMS) was prepared from the reaction of ${\alpha},{\omega}$-aminopropylpolydimethylsiloxane and diglycidyl ether of bisphenol-A (DGEBA) based epoxy resin, and PDMS modified epoxy hybrid compound (EMPDMSH) was prepared by introducing alkylesteraminopropyl alkoxy silane to EMPDMS. Their structures were characterized using FT-IR, $^1H$-NMR and $^{29}Si$-NMR. Coating materials were prepared by mixing EMPDMSH base and solvent. Physical properties of the coating materials coated on epoxy/glass fiber composite film were measured according to the content of PDMS in EMPDMSH. Contact angle of coating film was increased 30 to 71 degree. Adhesive property of coating film was 5B degree better then epoxy or acrylate coating materials, and surface roughness was decreased as increasing in EMPDMSH.

A STUDY ON THE ADHESION OF A SOFT LINER CONTAINING 4-META TO THE BASE METAL ALLOY AND ITS VISCOELASTIC PROPERTY

  • Park Hyun-Joo;Kim Chang-Whe;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.6
    • /
    • pp.732-746
    • /
    • 2003
  • Statement of problem. Soft lining materials, also referred to as tissue conditioning materials, tissue heating materials, relining materials, soft liners or tissue conditioners, were first introduced to dentistry by a plastic manufacturer in 1959. Since the introduction of the materials to the dental field, their material properties have been continually improved through the effort of many researchers. Soft lining materials have become widely accepted, particularly by prosthodontists, because of their numerous clinical advantages and ease of manipulation. Unfortunately, few reports have been issued upon the topic of increasing the bond strength between the base metal alloy used in cast denture bases and PMMA soft liner modified with 4-META, nor upon the pattern of debonding and material change in wet environment like a intra oral situation. Purpose. The purposes of this study were comparing the bond strength between base metal alloy used for the cast denture bases and PMMA soft liner modified with 4-META, and describing the pattern of debonding and material property change in wet environment like the intraoral situation. Material and Methods. This study consisted of four experiments: 1. The in vitro measurement of shear bond strength of the adhesive soft liner. 2. The in vitro measurement of shear bond strength of the adhesive soft liner after 2 weeks of aging. 3. A comparison of debonding patterns. 4. An evaluation the Relation time of modified soft liner. The soft liner used in this study was commercially available as Coe-soft (GC America.IL.,USA), which is provided in forms of powder and liquid. This is a PMMA soft liner commonly used in dental clinics. The metal primer used in this study was 4-META containing primer packed in Meta fast denture base resin (Sun Medical Co., Osaka, Japan). The specimens were formed in a single lap joint desist which is useful for evaluating the apparent shear bond strength of adhesively bonded metal plate by tensile loading. Using the $20{\times}20mm$ transparent grid, percent area of adhesive soft liner remaining on the shear area was calculated to classify the debonding patterns. To evaluate the change of the initial flow of the modified adhesive soft liner, the gelation time was measured with an oscillating rheometer (Haake RS150W/ TC50, Haake Co., Germany). It was a stress control and parallel plate type with the diameter of 35mm. Conclusion. Within the conditions and limitations of this study, the following conclusions were drawn as follows. 1. There was significant increase of bond strength in the 5% 4-META, 10% 4-META containing groups and in the primer coated groups versus the control group(P<0.05). 2. After 2 weeks of aging, no significant increase in bond strength was found except for the group containing 10% 4-META (P<0.05). 3. The gelation times of the modified soft liner were 9.3 minutes for the 5% 4-META containing liner and 11.5 minutes for the 10% 4-META liner. 4. The debonding patterns of the 4-META containing group after 2 weeks of aging were similar to those of immediaely after preparation, but the debonding pattern of the primer group showed more adhesive failure after 2 weeks of aging.

Enhanced Electrochemical Detection of Heavy Metal Ions via Post-synthetic Schiff Base Modification of MWCNT-MOF Composites

  • Yeon-Joo Kim;Seung-Ho Choi;Seon-Jin Choi
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.5
    • /
    • pp.366-372
    • /
    • 2024
  • In this study, we present a novel approach to improve electrochemical heavy metal ion (HMI) sensing responses via post-synthetic modification of carbon nanotube-based metal-organic framework (MOF) nanocomposites with a Schiff base. UiO66-NH2 was employed as the MOF and incorporated with multi-walled carbon nanotubes (MWCNT) through in-situ growth, enhancing the electrical conductivity of the MWCNT-UiO66-NH2 composite. Subsequently, the Schiff base, which has been proven to be an excellent ligand for metal ion detection, was functionalized onto MWCNT-UiO66-NH2 via post-synthetic modification to improve its HMI absorption capacity. To evaluate the effect of the Schiff base on HMI detection capacity, electrochemical sensing of Cd2+, Pb2+, Cu2+, and Hg2+ was performed in an aqueous solution utilizing the MWCNT-UiO66-Schiff modified electrode as well as the bare electrode. Individual differential pulse anodic stripping voltammetry results revealed that the modified electrode with MWCNT-UiO66-Schiff exhibited increased HMI sensing properties, especially with 1.82-fold improvement in average oxidation currents toward 10 µM of Cu2+ compared to that for a bare glassy carbon electrode. The selective Cu2+-sensing properties of MWCNT-UiO66-Schiff were reflected in the highly selective Cu2-binding affinity of the Schiff base-containing model molecules compared to those of Cd2+, Hg2+, and Pb2+. Our work provides a new strategy for improving the sensing properties of electrochemical HMI sensors by the post-synthetic modification of MWCNT-UiO66 with a Schiff base.

Ensemble deep learning-based models to predict the resilient modulus of modified base materials subjected to wet-dry cycles

  • Mahzad Esmaeili-Falak;Reza Sarkhani Benemaran
    • Geomechanics and Engineering
    • /
    • v.32 no.6
    • /
    • pp.583-600
    • /
    • 2023
  • The resilient modulus (MR) of various pavement materials plays a significant role in the pavement design by a mechanistic-empirical method. The MR determination is done by experimental tests that need time and money, along with special experimental tools. The present paper suggested a novel hybridized extreme gradient boosting (XGB) structure for forecasting the MR of modified base materials subject to wet-dry cycles. The models were created by various combinations of input variables called deep learning. Input variables consist of the number of W-D cycles (WDC), the ratio of free lime to SAF (CSAFR), the ratio of maximum dry density to the optimum moisture content (DMR), confining pressure (σ3), and deviatoric stress (σd). Two XGB structures were produced for the estimation aims, where determinative variables were optimized by particle swarm optimization (PSO) and black widow optimization algorithm (BWOA). According to the results' description and outputs of Taylor diagram, M1 model with the combination of WDC, CSAFR, DMR, σ3, and σd is recognized as the most suitable model, with R2 and RMSE values of BWOA-XGB for model M1 equal to 0.9991 and 55.19 MPa, respectively. Interestingly, the lowest value of RMSE for literature was at 116.94 MPa, while this study could gain the extremely lower RMSE owned by BWOA-XGB model at 55.198 MPa. At last, the explanations indicate the BWO algorithm's capability in determining the optimal value of XGB determinative parameters in MR prediction procedure.

Preparation of L-cysteine Salicylaldehyde Schiff-base Modified Macroporous Polystyrene Resin and Its Application to Determination of Trace Cadmium and Lead in Environmental Water Samples

  • Xie, Fazhi;Zhang, Fengjun;Xuan, Han;Ge, Yejun;Wang, Yin;Li, Guolian;Zhu, Lei;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.472-476
    • /
    • 2014
  • In this work, a new method that utilizes L-cysteine salicylaldehyde Schiff-base modified macroporous polystyrene resin (PS-CSC) as an effective sorbent has been developed for preconcentration of trace cadmium and lead in environmental water samples. The effect of pH, the contact time, the elution conditions, the flow rate, the initial concentration of target metal ions, and the effects of interfering ions on the preconcentration of the analytes were investigated. The maximum adsorption capacity of PS-CSC under optimum conditions for cadmium and lead were found to be 6.03 - 18.17 mg/g and 12.58 - 36.13 mg/g when the initial concentration of metal ions between 5.0 - 90 mg/L. The limits of detection for cadmium and lead were 2.46 ng/L and $0.52{\mu}g/L$, with a preconcentration factor of 200. The developed method has been validated by analyzing certified reference material and successfully applied for the enrichment and determination of trace cadmium and lead from environmental water samples.

Bond Strength of Latex-Modified Concrete (라텍스 개질 콘크리트의 부착강도 특성)

  • 윤경구;이남주;장흥균;심도식;김경진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.647-652
    • /
    • 2000
  • The bond strength of latex-modified concrete to normal portland cement concrete measured with direct pull-out test. Using $250\times1100\times1400$mm concrete slab as the base concrete, an overlay of the latex-modified concrete is applied and cured similar to bridge deck and then tested in direct pull-out. The test results not only give values of the bond strength of the overlay tested but also clearly indicate whether the failure is in the bond interface or the materials tested.

  • PDF

Electrosorption of U(IV) by Electochemically Modified Activated Carbon Fibers

  • Jung, Chong-Hun;Oh, Won-Zin;Lee, Yu-Ri;Park, Soo-Jin
    • Carbon letters
    • /
    • v.6 no.1
    • /
    • pp.25-30
    • /
    • 2005
  • The electrosorption of U(VI) from waste water was carried out by using an activated carbon fiber (ACF) felt electrode in a continuous electrosorption cell. In order to enhance the electrosorption capacity at a lower potential, the ACF was electrochemically modified in an acidic and a basic solution. Pore structure and functional groups of the electrochemically modified ACF were examined, and the effects of the modification conditions were studied for the adsorption of U(VI). Specific surface area of all the ACFs was decreased by this modification. The amount of the acidic functional groups decreased with a basic modification, while the amount increased a lot with an acidic modification. The electrosorption capacity of U(VI) decreased on the acid modified electrode due to the shielding effect of the acidic functional groups. The base modified electrode enhanced the capacity due to a reduction of the acidic functional groups. The electrosorption amount of U(VI) on the base modified electrode at .0.3 V corresponds to that of the as-received ACF electrode at .0.9 V. Such a good adsorption capacity was due to a reduction of the shielding effect and an increase of the hydroxyl ions in the electric double layer on the ACF surface by the application of negative potential.

  • PDF

Functionally Graded Polyurethane Elastomers Prepared By Electrophoresis

  • Zhang, Yuefan;Shiiba, Tetsuro;Furukawa, Mutsuhisa
    • Elastomers and Composites
    • /
    • v.34 no.5
    • /
    • pp.383-390
    • /
    • 1999
  • Functionally graded polyurethane elastomers PUEs/grad. Poly(dimethylammoninum ethylacrylate bromide)(PDMAEA) were prepared by the method of electrophoresis. Results of elemental analysis showed that concentration of PDMAEA had gradient across the thickness(2mm) of the base PUEs. The modified PUEs(PUEs/grad. PDMAEA) containing high concentration of PDMAEA displayed low degree of swelling in benzene which was poor solvent for PDMAEA, and high degree of swelling in water which was good solvent. For the each layer of modified PUEs, glass transition temperature, dynamic storage modulus were stooled by DSC, Rheovibron DDV-IIC dynamic viscoelastomer. The chemomechanical properties of modified PUEs was explored by the electric-stimulus.

  • PDF

Preparation and Characteristics of High Voltage Liquid Silicone Rubber by Modified Cross-linking Agent

  • Jung, Se-Young;Kim, Byung-Kyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.9-15
    • /
    • 2009
  • There is a growing demand for a high voltage silicone rubber composite with high mechanical property and high electrical property. The effect of modified cross-linking agent on the mechanical, electrical properties, and short-circuit test performance of silicone rubber insulators have been investigated. To use base polymer, the various silicone polymers were prepared by the equilibrium polymerization. Aluminum trihydrate surface was treated by vinyl silane. Liquid silicone rubber nanocomposite was prepared from the compounding of VPMPS, HPDMS, catalyst, and alumina trihydrate modified with 1,3,5-trivinyl-l,3,5-trimethylcyclotrisiloxane. The mechanical property and electrical property for insulation materials were measured, indicating the high tensile strength and the good short-circuit property.

Preparation and Properties of Coating Materials of Polydimethylsiloxane with Acrylate Groups (Acrylate기를 갖는 Polydimethylsiloxane계 코팅 액의 제조와 그 특성)

  • Bak, Seung Woo;Kang, Ho Jong;Kang, Doo Whan
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.138-143
    • /
    • 2014
  • ${\alpha},{\omega}$-Hydroxypropyl polydimethylsiloxane (HO-PDMS) was prepared by hydrosilylation of hydrogen terminated polydimethylsiloxane with allyl alcohol. Polydimethylsiloxane modified urethane with isocyanate group (PSU) was prepared from cyclic trimer of hexamethylenediisocyanate with HO-PDMS. PDMS modified urethane base resin with acrylic group (PSUA) was prepared from the urethane reaction of PSU with isocyanate group and 2-hydroxyethylmethacrylate. Their structures were characterized using FTIR and NMR. Coating materials were prepared by mixing PSUA, acrylic hardner, photo-initiator, and solvent and coated on PET film to obtain flexible and hard coating film by UV irradiation. Transparency of coating film was 89.7%, contact angle, $88^{\circ}$, and pencil hardness, 3H.