• Title/Summary/Keyword: modified amine

Search Result 112, Processing Time 0.022 seconds

Novel Isoquinolinamine and Isoindoloquinazolinone Compounds Exhibit Antiproliferative Activity in Acute Lymphoblastic Leukemia Cells

  • Roolf, Catrin;Saleweski, Jan-Niklas;Stein, Arno;Richter, Anna;Maletzki, Claudia;Sekora, Anett;Escobar, Hugo Murua;Wu, Xiao-Feng;Beller, Matthias;Junghanss, Christian
    • Biomolecules & Therapeutics
    • /
    • v.27 no.5
    • /
    • pp.492-501
    • /
    • 2019
  • Nitrogen-containing heterocycles such as quinoline, quinazolinones and indole are scaffolds of natural products and have broad biological effects. During the last years those structures have been intensively synthesized and modified to yield new synthetic molecules that can specifically inhibit the activity of dysregulated protein kinases in cancer cells. Herein, a series of newly synthesized isoquinolinamine (FX-1 to 8) and isoindoloquinazolinone (FX-9, FX-42, FX-43) compounds were evaluated in regards to their anti-leukemic potential on human B- and T- acute lymphoblastic leukemia (ALL) cells. Several biological effects were observed. B-ALL cells (SEM, RS4;11) were more sensitive against isoquinolinamine compounds than T-ALL cells (Jurkat, CEM). In SEM cells, metabolic activity decreased with $10{\mu}M$ up to 26.7% (FX-3), 25.2% (FX-7) and 14.5% (FX-8). The 3-(p-Tolyl) isoquinolin-1-amine FX-9 was the most effective agent against B- and T-ALL cells with IC50 values ranging from 0.54 to $1.94{\mu}M$. None of the tested compounds displayed hemolysis on erythrocytes or cytotoxicity against healthy leukocytes. Anti-proliferative effect of FX-9 was associated with changes in cell morphology and apoptosis induction. Further, influence of FX-9 on PI3K/AKT, MAPK and JAK/STAT signaling was detected but was heterogeneous. Functional inhibition testing of 58 kinases revealed no specific inhibitory activity among cancer-related kinases. In conclusion, FX-9 displays significant antileukemic activity in B- and T-ALL cells and should be further evaluated in regards to the mechanisms of action. Further compounds of the current series might serve as templates for the design of new compounds and as basic structures for modification approaches.

Determination and Validation of an Analytical Method for Spiropidion and Its Metabolite Spiropidion-enol (SYN547305) in Agricultural Products with LC-MS/MS (LC-MS/MS를 이용한 농산물 중 Spiropidion 및 대사산물 Spiropidion-enol (SYN547305) 시험법 개발 및 검증)

  • Gu, Sun Young;Lee, Su Jung;Shin, Hye-Sun;Kang, Sung Eun;Chung, Yun Mi;Lee, Jung Mi;Jung, Yong-hyun;Moon, Guiim
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.2
    • /
    • pp.82-94
    • /
    • 2022
  • BACKGROUND: Spiropidion and its metabolite are tetramic acid insecticide and require the establishment of an official analysis method for the safety management because they are newly registered in Korea. Therefore, this study was to determine the analysis method of residual spiropidion and its metabolite for the five representative agricultural products. METHODS AND RESULTS: Three QuEChERS methods (original, AOAC, and EN method) were applied to optimize the extraction method, and the EN method was finally selected by comparing the recovery test and matrix effect results. Various adsorbent agents were applied to establish the clean up method. As a result, the recovery of spiropidion was reduced when using the dispersive-SPE method with MgSO4, primary secondary amine (PSA), graphitized carbon black (GCB) and octadecyl (C18) in soybean. Color interference was minimized by selecting the case including GCB and C18 in addition to MgSO4. This method was established as the final analysis method. LC-MS/MS was used for the analysis by considering the selectivity and sensitivity of the target pesticide and the analysis was performed in MRM mode. The results of the recovery test using the established analysis method and inter laboratory validation showed a valid range of 79.4-108.4%, with relative standard deviation and coefficient of variation were less than 7.2% and 14.4%, respectively. CONCLUSION(S): Spiropidion and its metabolite could be analyzed with a modified QuEChERS method, and the established method would be widely available to ensure the safety of residual insecticides in Korea.