• Title/Summary/Keyword: modification vehicle

Search Result 164, Processing Time 0.02 seconds

An Improvement for Determining Response Modification Factor in Bridge Load Rating (응력보정계수 산정 방법 개선)

  • Koo, Bong-Kuen;Shin, Jae-In;Lee, Sang-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.1
    • /
    • pp.169-175
    • /
    • 2001
  • Bridge load rating calculations provide a basis for determining the safe load capacity of bridge. Load rating requires engineering judgement in determining a rating value that is applicable to maintaining the safe use of the bridge and arriving at posting and permit decisions. Load testing is an effective means in calculating the rating value of bridge. In Korea, load carrying capacity of bridge is modified by response modification factor that is determined from comparisons of measured values and analysis results. The response modification factor may be corrupted by vehicle location error that is defined as the gap of test vehicle location between load testing and analysis. In this study, the effects of vehicle location error to structural response and response modification factor are investigated, and a new method for evaluating response modification factor is proposed. The random data analysis shows that the proposed method is less sensitive to vehicle location error than the present method.

  • PDF

An Improved Method for Determining Response Correction Factor in Bridge Load Rating (교량응력보정계수 산정방법 개선)

  • 신재인;이상순;이상달
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1273-1278
    • /
    • 2000
  • Bridge load rating calculations provide a basis for determining the safe load capacity of bridge. Load rating requires engineering judgement in determining a rating value that is applicable to maintaining the safe use of the bridge and arriving at posting and permit decisions. Load testing is an effective means in calculating the rating value of bridge. In Korea, load carrying capacity of bridge is modified by stress modification factor that is determined from comparisons of measured values and analysis results The stress modification factor may be corrupted by vehicle location error that is defined as the gap of test vehicle location between load testing and analysis. In this study, the effects of vehicle location error to structural response and stress modification factor are investigated, and a new method for evaluating stress modification factor is proposed. The random data analysis shows that the proposed method is less sensitive to vehicle location error than the present method.

Yaw Moment Control for Modification of Steering Characteristic in Rear-driven Vehicle with Front In-wheel Motors (전륜 인휠모터 후륜구동 차량의 선회 특성 변형을 위한 요모멘트 제어)

  • Cha, Hyunsoo;Joa, Eunhyek;Park, Kwanwoo;Yi, Kyongsu;Park, Jaeyong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.1
    • /
    • pp.6-13
    • /
    • 2021
  • This paper presents yaw moment control for modification of steering characteristic in rear-driven vehicle with front in-wheel motors (IWMs). The proposed control algorithm is designed to modify yaw rate response of the test vehicle. General approach for modification of steering characteristic is to define the desired yaw rate and track the yaw rate. This yaw rate tracking method can cause the chattering problem because of the IWM actuator response. Large overshoot and settling time in IWM torque response can amplify the oscillation in control input and yaw rate. To resolve these problems, open-loop IWM controller for cornering agility was designed to modify the understeer gradient of the vehicle. The proposed algorithm has been investigated via the computer simulations and the vehicle tests. The performance evaluation has been conducted on dry asphalt using E-segment test vehicle. The performance of the proposed algorithm has been compared to general yaw rate tracking algorithm in the vehicle tests. It has been shown that the proposed control law improved the cornering agility without chattering problem.

Bogie/Carbody Interface Bolster Development for the Installation of Active Suspensions and the Modification Operation Improvement of TTX Vehicle (TTX 차량의 능동 현가장치 설치 및 수정 작업 개선을 위한 대차/차체 인터페이스 볼스터 개발)

  • Kim, Hyung-Joohn;Park, Sung-Tae;Kang, Kwang-Ho;Lee, Won-Sang
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.28-34
    • /
    • 2011
  • The carbody underframe of TTX vehicle should be modified a lot for the installation of new devices such as an active suspension system between the bogie and the carbody of TTX vehicle, because the carbody underframe is one body structure consisting of a center sill welded with a carbody bolster. Modification operation of the carbody takes a lot of time and cost, because the huge sized carbody structure should be moved to a machining apparatus and machined to guarantee the manufacture accuracy of new device installation brackets. For this reason, modification operation improvement is needed to install new devices more efficiently between the bogie and the carbody. This paper introduce the development of 'bogie/carbody interface bolster' that not only supports the carbody weight but also enables new devices to be installed more efficiently between the bogie and the carbody. This development has advantage to reduce working time and cost to install new devices such as an active suspension system between the bogie and the carbody by minimizing the modification of the carbody of TTX vehicle.

  • PDF

A Study on The Vibration Reduction of 2-D Ring Model of Vehicle Compartment (2차원 차실 링모델의 진동저감에 관한 연구)

  • Yoo, Sun Jae;Kim, Seock Hyun
    • Journal of Industrial Technology
    • /
    • v.10
    • /
    • pp.21-32
    • /
    • 1990
  • Car body resonance often generates severe vibrational and noise problems in vehicle compartment. In this study, vibrational characteristics of 2-D vehicle compartment model is investigated and structural modification is carried out by numerical simulation to shift natural frequencies and to reduce stresses in resonance. To this end, ring models of the compartment are manufactured and analysed by FEA. The results are verified to be in good agreement with those of experimental modal testing. And the results of this study offer efficient strucural modification technique for vibration reduction of real cars.

  • PDF

Bridge modal identification based on frequency variation caused by a parked vehicle

  • He, Wen-Yu;Ren, Wei-Xin;Wang, Quan;Wang, Zuo-Cai
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.413-421
    • /
    • 2022
  • Modal parameters are the main dynamic characteristics of bridge. This study aims to propose an innovative route to estimate the modal parameters for bridges by using a parked vehicle in which mode shapes with high accuracy and spatial resolution are identified by frequency measurement. Based on the theory of dynamic modification and modal identification, the mathematical formulation between the parked mass induced frequency variation and the modal parameters of a bridge is derived. Then this mathematical formulation is extended to a parked vehicle-bridge system. The arithmetic and processes for estimating the modal parameters based on the identified frequency variation of the vehicle-bridge systems when the vehicle locates at sequentially arranged positions are presented. Finally the proposed method is applied to several simulated bridges of different types. The results indicate that it can estimate the modal parameters with high accuracy and efficiency.

Improvement of Interior Booming Noise in the Vehicle Using the Structural Dynamic Modification (구조물 동특성 변경을 이용한 실내 부밍 소음 개선)

  • Kim, Young-Ha;Lee, Jae-Woong;Kim, Sung-Gi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.354-359
    • /
    • 2012
  • Improvement of structure-borne noises in the vehicle compartments has been one of the primary concerns in the development of vehicles. The booming is an annoying low frequency interior noise and vibration in vehicle. But it is difficult to reduce the structure-born booming noise in traditional method - trial and error within the shorten development schedule. So in present, the structure dynamic modification (SDM) method helpful to predict the effect of the local mass, stiffness, and damping is introduced. So in order to reduce the interior booming noise, the SDM was performed, and verified with modal test result. It was shown that the interior booming noise was reduced as predicted.

  • PDF

Reduction of Booming Noise Using Damper Clutch Disk on the Drive Shaft of Commercial Small Truck (상업용 소형 트럭의 구동축에서 댐퍼 클러치 디스크를 이용한 부밍 소음 저감)

  • Kim, Yong Dae;Choi, Byungjae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.6
    • /
    • pp.377-383
    • /
    • 2015
  • Torsion mode or bending mode of drive-line for rear-wheel drive vehicle exists in low frequency band. If resonance exists there between natural mode of driveline and powertrain excitation force, drive-line will manifest excessive vibration response. Also, the vibration response can be transmitted to vehicle body and can induce booming noise. A vehicle in this study exhibits a booming noise problem under specific transmission gear condition. To draw performance improvement plan, finite element analysis technique was used. Modification was evaluated qualitatively and priorities were derived. Finally, effectiveness of best modification was verified through test and full vehicle FE analysis.

An Investigation on the Method of Tooth Modification for Noise Suppression of Gear Transmission (기어 변속기의 소음저감을 위한 치형수정 설정방법에 관한 고찰)

  • Bae, M.H.;Park, N.G.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.243-251
    • /
    • 1998
  • A method of establishing the tooth modification for gear transmission of vehicles to reduce gear whine noise, caused by tooth impact phenomenon of mating gear, is introduced. The major causes of tooth impact are due to the deflections of gear teeth and shafts of transmission with the loaded condition including various kinds of manufacturing errors. The theoretical shape of tooth surface to avoid tooth impact is derived by the amount of elastic deformation of gear teeth and shaft and overall manufacturing error of machine tool. The surface function is converted with respect to the conventional commercial data usually communicated to the gear inspection system. The proposed method is applied to the gearbox of four wheel drive vehicle and shows the gear whine noise decreased to the 8 dB in the sound level.

  • PDF

Modification of Hybrid Diesel Vehicle and Its Effect on the Exhaust Emissions (디젤 하이브리드 차량 개조에 따른 배기 배출물 영향 평가)

  • Kwon, Soonho;Lim, Jongsoon;Lee, Hyunwoo;Lee, Jeonghoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.5
    • /
    • pp.537-544
    • /
    • 2015
  • The effects of the modification of hybrid vehicle components on diesel exhaust emissions were investigated in this study. We examined the changes in exhaust emissions and the fuel consumption (FC) caused by the modification of generator (alternator) and motors. Exhaust emissions such as black carbon (BC), HC, $NO_X$ and $CO_2$ were measured not only in idle state but also on an actual urban road as well as on a chassis dynamometer. BC, $NO_X$ and HC emissions increased by 95%, 27% and 34% respectively when the generator charged the battery in the idle condition. BC and FC decreased in hybrid mode on the actual urban road partly because the motors were used to assist the diesel engine. In addition, the decreases in exhaust emissions and FC were also evident in the hybrid mode when the vehicle was tested on the chassis dynamometer.