• Title/Summary/Keyword: modification factor

Search Result 666, Processing Time 0.023 seconds

Response modification factor of suspended zipper braced frames

  • Abdollahzadeh, Gholamreza;Abbasi, Mehdi
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.165-185
    • /
    • 2015
  • The suspended zipper bracing system is suggested to reduce the flaws of ordinary zipper braced and concentric inverted V braced frames. In the design procedure of suspended zipper bracing systems, columns and top story truss elements are strengthened. This bracing system show different performances and characteristics compared with inverted V braced and ordinary zipper frames. As a result, a different response modification factor for suspend zipper frames is needed. In this research paper, the response modification factor of suspended zipper frames was obtained using the incremental dynamic analysis. Suspended zipper braced frames with different stories and bay lengths were selected to be representations of the design space. To analyze the frames, a number of models were constructed and calibrated using experimental data. These archetype models were subjected to 44 earthquake records of the FEMA-P695 project data set. The incremental dynamic analysis and elastic dynamic analysis were carried out to determine the yield base shear value and elastic base shear value of archetype models using the OpenSEES software. The seismic response modification factor for each frame was calculated separately and the values of 9.5 and 13.6 were recommended for ultimate limit state and allowable stress design methods, respectively.

Lateral stiffness of reinforced concrete flat plates with steps under seismic loads

  • Kim, Sanghee;Kang, Thomas H.K.;Kim, Jae-Yo;Park, Hong-Gun
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.891-906
    • /
    • 2014
  • The purpose of this study is to propose a modification factor to reflect the lateral stiffness modification when a step is located in flat plates. Reinforced concrete slabs with steps have different structural characteristics that are demonstrated by a series of structural experiment and nonlinear analyses. The corner at the step is weak and flexible, and the associated rotational stiffness degradation at the corner of the step is identified through analyses of 6 types of models using a nonlinear finite element program. Then a systematic analysis of stiffness changes is performed using a linear finite element procedure along with rotational springs. The lateral stiffness of reinforced concrete flat plates with steps is mainly affected by the step length, location, thickness and height. Therefore, a single modification factor for each of these variables is obtained, while other variables are constrained. When multiple variables are considered, each single modification factor is multiplied by the other. Such a method is verified by a comparative analysis. Finally, a complex modification factor can be applied to the existing effective slab width.

An Improved Method for Determining Response Correction Factor in Bridge Load Rating (교량응력보정계수 산정방법 개선)

  • 신재인;이상순;이상달
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1273-1278
    • /
    • 2000
  • Bridge load rating calculations provide a basis for determining the safe load capacity of bridge. Load rating requires engineering judgement in determining a rating value that is applicable to maintaining the safe use of the bridge and arriving at posting and permit decisions. Load testing is an effective means in calculating the rating value of bridge. In Korea, load carrying capacity of bridge is modified by stress modification factor that is determined from comparisons of measured values and analysis results The stress modification factor may be corrupted by vehicle location error that is defined as the gap of test vehicle location between load testing and analysis. In this study, the effects of vehicle location error to structural response and stress modification factor are investigated, and a new method for evaluating stress modification factor is proposed. The random data analysis shows that the proposed method is less sensitive to vehicle location error than the present method.

A Role for Ginseng in the Control of Postprandial Glycemia and Type 2 Diabetes

  • Vuksan Vladimir;Sievenpiper John L;Xu Zheng;Zdravkovic Uljana Beljan;Jenkins Alexandra L;Arnason John T;Bateman Ryon M.;Leiter Lawrence A;Josse Robert G;Francis Thomas;Stavro Mark P
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.1-19
    • /
    • 2002
  • The use of herbals has increased considerably while their efficacy and safety remain untested. This unsupported surge in demand has prompted a call for their clinical evaluation. One area in which evaluations are emerging is ginseng and diabetes. Growing evidence is accumulating from in vitro and animal models indicating that various ginseng species, American (Panax quinquefolius L), Asian (Panax ginseng C.A. Meyer), Korean Red, San-chi (Panax notoginseng [Burk.] P.R. Chen), and the non-panax species Siberian (Eleutherococcus senticossus) ginsing, and their fractions, saponins (ginsenosides) and peptidoglycans (panaxans for panax species and eleutehrans for Siberian ginseng), might affect carbohydrate metabolism and related signaling molecules. Recent human studies from our laboratory have also shown a blood glucose lowering effect of American ginseng (AG) and some other ginseng spices postprandially after acute administration and chronically after administration for 8-weeks in people with type 2 diabetes. Although generally encouraging, these data only indicate a need for more evaluations of ginsengs safety and efficacy. Because of poor industry standardization, it is not known whether all ginsengs will affect blood glucose. In this regards some ginseng batches have demonstrated null effects while others have even raised postprandial glycemia. Clinical research should therefore focus on components involved in its glucose lowering effects.

  • PDF

Response Modification Factors of Non-seismic School Buildings Considering Short Column Effects and Natural Period (단주효과 및 고유주기를 고려한 비내진 학교시설의 반응 수정계수)

  • Kim, Beom Seok;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.201-209
    • /
    • 2019
  • Response modification factors of school facilities for non-seismic RC moment frames with partial masonry infills in 'Manual for Seismic Performance Evaluation and Retrofit of School Facilities' published in 2018 were investigated in the preceding study. However, since previous studies are based on 2D frame analysis and limited analysis conditions, additional verification needs to be performed to further apply various conditions including orthogonal effect of seismic load. Therefore, this study is to select appropriate response modification factors of school facilities for non-seismic RC moment frames with partial masonry infills by 3D frame analysis. The results are as follows. An appropriate response modification factor for non-seismic RC moment frames with partial masonry infills is proposed as 2.5 for all cases if the period is longer than 0.6 seconds. Also if the period is less than 0.4 seconds and the ratio of shear-controlled columns is less than 30%, 2.5 is chosen too. However, if the period is less than 0.4 seconds and the ratio of shear-controlled columns is higher than 30%, the response modification factor shall be reduced to 2.0. If the period is between 0.4 and 0.6 seconds, then linearly interpolates the response correction factor.

A Study on the Response Modification Factor of Unreinforced masonry Buildings (비보강 조적조 건물의 반응 수정 계수에 관한 연구)

  • 정상훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.265-272
    • /
    • 1999
  • there is no earthquake resistant design code for the unreinforced masonary(URM) buildings in Korea. But it does not mean that all URM buldings in Korea is safe under the possible extent of an earthquake. The purpose of this study is in the inelastic analysis of unreinforced masonary walls with many different types of openings and carry out their ductilities an strengths, response modification factor of each wall has been compared and the most appropriate response modification factor for URM building in Korea has been proposed.

  • PDF

Evaluation of Response Modification Factors for Shear Wall Apartment Building (벽식 APT의 반응수정계수 추정에 관한 연구)

  • 송정원;송진규;이수곤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.859-864
    • /
    • 2001
  • For earthquake resistance design, a response modification factor is used to reduce the design strength and it reflects ductility, reserve strength, redundancy and damping effect. But this factor has not theoretical basis. In this study, two response modification factors are compared and analyzed for shear wall apartment building.; the one is introduced by ATC-19 Procedures, the other is suggested FEMA-273 and ATC-40 through nonlinear static analysis. For the results, ATC-19 procedure gives a reasonable estimation to R factor. But $R_{u}$ by using FEAM-273 and ATC-40 methods is estimated so small in case of a minor or moderate earthquake region. Due to this fact, response modification factor is smaller than suggested load criterion 3.0. So, it needs to decrease wall volume and reduce the global strength and system stiffness for proper ductile behavior matching to domestic load criterion.

  • PDF

Seismic Design of Structures in Low Seismicity Regions

  • Lee, Dong-Guen;Cho, So-Hoon;Ko, Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.53-63
    • /
    • 2007
  • Seismic design codes are developed mainly based on the observation of the behavior of structures in the high seismicity regions where structures may experience significant amount of inelastic deformations and major earthquakes may result in structural damages in a vast area. Therefore, seismic loads are reduced in current design codes for building structures using response modification factors which depend on the ductility capacity and overstrength of a structural system. However, structures in low seismicity regions, subjected to a minor earthquake, will behave almost elastically because of the larger overstrength of structures in low seismicity regions such as Korea. Structures in low seismicity regions may have longer periods since they are designed to smaller seismic loads and main target of design will be minor or moderate earthquakes occurring nearby. Ground accelerations recorded at stations near the epicenter may have somewhat different response spectra from those of distant station records. Therefore, it is necessary to verify if the seismic design methods based on high seismicity would he applicable to low seismicity regions. In this study, the adequacy of design spectra, period estimation and response modification factors are discussed for the seismic design in low seismicity regions. The response modification factors are verified based on the ductility and overstrength of building structures estimated from the farce-displacement relationship. For the same response modification factor, the ductility demand in low seismicity regions may be smaller than that of high seismicity regions because the overstrength of structures may be larger in low seismicity regions. The ductility demands in example structures designed to UBC97 for high, moderate and low seismicity regions were compared. Demands of plastic rotation in connections were much lower in low seismicity regions compared to those of high seismicity regions when the structures are designed with the same response modification factor. Therefore, in low seismicity regions, it would be not required to use connection details with large ductility capacity even for structures designed with a large response modification factor.

Effect of coadministration of enriched Korean Red Ginseng (Panax ginseng) and American ginseng (Panax quinquefolius L) on cardiometabolic outcomes in type-2 diabetes: A randomized controlled trial

  • Jovanovski, Elena;Smircic-Duvnjak, Lea;Komishon, Allison;Au-Yeung, Fei (Rodney);Sievenpiper, John L.;Zurbau, Andreea;Jenkins, Alexandra L.;Sung, Mi-Kyung;Josse, Robert;Li, Dandan;Vuksan, Vladimir
    • Journal of Ginseng Research
    • /
    • v.45 no.5
    • /
    • pp.546-554
    • /
    • 2021
  • Background: Diabetes mellitus and hypertension often occur together, amplifying cardiovascular disease (CVD) risk and emphasizing the need for a multitargeted treatment approach. American ginseng (AG) and Korean Red Ginseng (KRG) species could improve glycemic control via complementary mechanisms. Additionally, a KRG-inherent component, ginsenoside Rg3, may moderate blood pressure (BP). Our objective was to investigate the therapeutic potential of coadministration of Rg3-enriched Korean Red Ginseng (Rg3-KRG) and AG, added to standard of care therapy, in the management of hypertension and cardiometabolic risk factors in type-2 diabetes. Methods: Within a randomized controlled, parallel design of 80 participants with type-2 diabetes (HbA1c: 6.5-8%) and hypertension (systolic BP: 140-160 mmHg or treated), supplementation with either 2.25 g/day of combined Rg3-KRG + AG or wheat-bran control was assessed over a 12-wk intervention period. The primary endpoint was ambulatory 24-h systolic BP. Additional endpoints included further hemodynamic assessment, glycemic control, plasma lipids and safety monitoring. Results: Combined ginseng intervention generated a mean ± SE decrease in primary endpoint of 24-h systolic BP (-3.98 ± 2.0 mmHg, p = 0.04). Additionally, there was a greater reduction in HbA1c (-0.35 ± 0.1% [-3.8 ± 1.1 mmol/mol], p = 0.02), and change in blood lipids: total cholesterol (-0.50 ± 0.2 mmol/l, p = 0.01), non-HDL-C (-0.54 ± 0.2 mmol/l, p = 0.01), triglycerides (-0.40 ± 0.2 mmol/l, p = 0.02) and LDL-C (-0.35 ± 0.2 mmol/l, p = 0.06) at 12 wks, relative to control. No adverse safety outcomes were observed. Conclusion: Coadministration of Rg3-KRG + AG is an effective addon for improving BP along with attaining favorable cardiometabolic outcomes in individuals with type 2 diabetes. Ginseng derivatives may offer clinical utility when included in the polypharmacy and lifestyle treatment of diabetes. Clinical trial registration: Clinicaltrials.gov identifier, NCT01578837;

The Effect of Addendum Modification Coefficient on Gear Strength to Planetary Gear Reducer (유성기어 감속기에서 전위계수가 기어 강도에 미치는 영향)

  • Kwak, Ki-Suk;Han, Dong-Seop
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.38-43
    • /
    • 2011
  • Industrial reducer is in general use to Deck Crane. High-precision and high-efficient reducer is minimized the power-loss and energy-loss of a machine. So it contribute the price reduction and life extension. Reducer is usually using the Planetary gear reducer. Planetary gear reducer is composed the sun gear, planet gear, internal gear and casing. Industrial reducer's wear and breakage have a short-life. To solve this problem, it is using the profile-shifted-gear or tooth modification. This study was carried out the effect of addendum modification coefficient on tooth fillet bending strength to planetary reducer. Tooth fillet bending stress is calculate. And all parameter were expressed the function of addendum modification coefficient. And then stress concentration factor of tooth fillet curve was express the function of addendum modification coefficient using comparison between theory and finite element analysis.