• Title/Summary/Keyword: modes of vibration

Search Result 1,277, Processing Time 0.025 seconds

Dynamic Modeling and Active Vibration Control of Cylindrical Shell equipped with MFC Actuators (MFC 작동기가 부착된 박판 실린더 쉘의 동적 모델링과 능동진동제어)

  • Kwak, Moon-K.;Jung, Moon-San;Bae, Byung-Chan;Lee, Myuing-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1229-1234
    • /
    • 2006
  • This paper is concerned with the dynamic modeling and controller design for a cylindrical shell equipped with MFC actuators. The dynamic model was derived by using Ravleigh-Ritz method based on Donnel-Mushtari shell theory. The boundary conditions at both ends were assumed to be shear diaphragm. To verify the theoretical results, a cylindrical shell structure made of aluminum was built ana tested by using impact hammer. Experimental results show that there are little discrepancies compared to theoretical results because of the boundary conditions at both ends. The MFC actuators were glued to the cylindrical shell in longitudinal and circumferential directions. The PPF controller were designed for lowest two modes and applied to the MFC actuators. The experimental results show that vibrations can be successfully suppressed.

  • PDF

Model Analysis of Plate using by Digital Test System (디지털 실험장치를 이용한 판의 모우드 해석)

  • Hong, Bong-Ki;Bae, Dong-Myung;Bae, Seong-Yoeng
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.1
    • /
    • pp.39-55
    • /
    • 1993
  • Modal Analysis is the process of characterizing the dynamic properties of an elastic structure by identifying its modes of vibration. A mode of vibration is a global property of an elastic structure. That is, a mode has a specific natural frequency and damping factor which can be identified from response data at practically any point on a structure, and it has a characteristic mode shape which identifies the mode spatially over the entire structure. Modal testing is able to be performed on structural and mechanical structure in an effort to learn more about their elastic behavior. Once the dynamic properties of a structure are known its behavior can be predicted and therefore controlled or corrected. Resonant frequencies, damping factors and mode shape data can be used directly by a mechanical designer to pin point weak spots in a structure design, or this data can also be used to confirm or synthesize equations of motion for the elastic structure. These differential equations can be used to simulate structural response to know input forces and to examine the effects of pertubations in the distributed mass, stiffness and damping properties of the structure in more detail. In this paper the measurement of transfer functions in digital form, and the application of digital parameter identification techniques to identify modal parameters from the measured transfer function data are discussed. It is first shown that the transfer matrix, which is a complete dynamic model of an elastic plate structure can be written in terms of the structural modes of vibration. This special mathematical form allows one to identify the complete dynamics of the structure from a much reduced set of test data, and is the essence of the modal approach to identifying the dynamics of a structure. Finally, the application of transfer function models and identification techniques for obtaining modal parameters from the transfer function data are discussed. Characteristics on vibration response of elastic plate structure obtained from the dynamic analysis by Finite Element Method are compared with results of modal analysis.

  • PDF

Classification of Vibration Signals for Different Types of Failures in Electric Propulsion Motors for Ships Using Data from Small-Scale Apparatus (소형 모사 장비의 데이터를 이용한 선박용 전기 추진 모터의 고장 유형별 진동 신호의 분류)

  • Seung-Yeol Yoo;Jun-Gyo Jang;Min-Sung Jeon;Jae-Chul Lee;Dong-Hoon Kang;Soon-Sup Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.6
    • /
    • pp.441-449
    • /
    • 2023
  • With the enforcement of environmental regulations by the International Maritime Organization, the market for eco-friendly ships is expanding, and ships using electric propulsion devices are emerging as a promising solution. Many studies have been conducted to predict the failure of ships, but most of them are mainly research on the main diesel engine of ships. As the ship's propulsion method changes, new data is needed to predict the failure of electric propulsion ships. In this paper aims to analyze the failure characteristics of the electric propulsion system in consideration of the difference in the type of failure between the internal diesel engine and the electric propulsion system. The ship's propulsion unit assumed a DC motor and a signal pattern for normal conditions and general failure modes, but the failure record of the electric propulsion device operated on the actual ship was not available, so it generated a failure signal for small electric motor equipment to identify the failure signal. Assuming unbalance, misalignment, and bearing failure, which are the primary failure modes of the ship's electric motor, a failure signal was generated using a "rotator vibration data generator," and the frequency band, size, and phase difference of the measured vibration signal were analyzed to analyze the characteristics of each failure condition. Finally, the characteristics of each failure condition were identified so that the signals according to the failure type could be classified.

Assessment of environmental effects in scour monitoring of a cable-stayed bridge simply based on pier vibration measurements

  • Wu, Wen-Hwa;Chen, Chien-Chou;Shi, Wei-Sheng;Huang, Chun-Ming
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.231-246
    • /
    • 2017
  • A recent work by the authors has demonstrated the feasibility of scour evaluation for Kao-Ping-Hsi Cable-Stayed Bridge simply based on ambient vibration measurements. To further attain the goal of scour monitoring, a key challenge comes from the interference of several environmental factors that may also significantly alter the pier frequencies without the change of scour depth. Consequently, this study attempts to investigate the variation in certain modal frequencies of this bridge induced by several environmental factors. Four sets of pier vibration measurements were taken either during the season of plum rains, under regular summer days without rain, or in a period of typhoon. These signals are analyzed with the stochastic subspace identification and empirical mode decomposition techniques. The variations of the identified modal frequencies are then compared with those of the corresponding traffic load, air temperature, and water level. Comparison of the analyzed results elucidates that both the traffic load and the environmental temperature are negatively correlated with the bridge frequencies. However, the traffic load is clearly a more dominant factor to alternate the identified bridge deck frequency than the environmental temperature. The pier modes are also influenced by the passing traffic on the bridge deck, even though with a weaker correlation. In addition, the variation of air temperature follows a similar tendency as that of the passing traffic, but its effect on changing the bridge frequencies is obviously not as significant. As for the effect from the alternation of water level, it is observed that the frequency baselines of the pier modes may positively correlate with the water level during the seasons of plum rains and typhoon.

Empirical decomposition method for modeless component and its application to VIV analysis

  • Chen, Zheng-Shou;Park, Yeon-Seok;Wang, Li-ping;Kim, Wu-Joan;Sun, Meng;Li, Qiang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.301-314
    • /
    • 2015
  • Aiming at accurately distinguishing modeless component and natural vibration mode terms from data series of nonlinear and non-stationary processes, such as Vortex-Induced Vibration (VIV), a new empirical mode decomposition method has been developed in this paper. The key innovation related to this technique concerns the method to decompose modeless component from non-stationary process, characterized by a predetermined 'maximum intrinsic time window' and cubic spline. The introduction of conceptual modeless component eliminates the requirement of using spurious harmonics to represent nonlinear and non-stationary signals and then makes subsequent modal identification more accurate and meaningful. It neither slacks the vibration power of natural modes nor aggrandizes spurious energy of modeless component. The scale of the maximum intrinsic time window has been well designed, avoiding energy aliasing in data processing. Finally, it has been applied to analyze data series of vortex-induced vibration processes. Taking advantage of this newly introduced empirical decomposition method and mode identification technique, the vibration analysis about vortex-induced vibration becomes more meaningful.

Random Vibration Analysis of Portable Power Supply Container for Radar With U.S. Military Standards (미 군사규격을 적용한 레이더 전력공급용 이동식 컨테이너의 Random Vibration 해석)

  • Do, Jae-Seok;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.71-77
    • /
    • 2022
  • In times of war or emergencies, weapon systems, such as radars, must receive stable power. This can be achieved using improved onboard portable power systems made of steel containers. However, a breakdown can occur in the event of random vibration during transportation via a vehicle or train. Electrical-power shortages or restrictions pose a significant threat to security. In this study, Composite Wheeled Vehicle(CWV) data and rail cargo data with Acceleration Spectral Density(ASD), specified in MIL-STD-810H METHOD 514.8, were interpreted as input data of the three-axis random vibration method using ANSYS 19.2. Modal analysis was performed up to 500 Hz, and deformations in modes 1 to 117 were calculated to utilize all ASD data. The maximum equivalent stress in the three-axis direction was obtained using a random vibration analysis. Similarly, the margin of safety was calculated using the derived equivalent stress and material properties. Overall, the analysis verified that the portable container designed for the power supply system satisfied the required vibration demands.

System Identification of a Full Scale Five-story building for Vibration Controller design (진동제어기 설계를 위한 실물크기 5층 건물의 시스템 식별)

  • Min, Kyung-Won;Lee, Young-Cheol;Lee, Sang-Hyun;Park, Min-Kyu;Kim, Doo-Hoon;Park, Jin-Il;Jeong, Jeoung-Kyo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.676-681
    • /
    • 2002
  • System Identification is carried out for a full scale five-story builing to design a vibration controller. Dynamic characteristics such as natural frequencies, damping ratios, and modes are obtained from the input/output information by both sine-sweep method and white noise method. The active mass driver installed on the five floor is applied as external loading to move the building and each floor acceleration is measured and processed for the system identification. The identified building will be experimentally investigated again with viscoelastic dampers installed at inter-stories to obtain the response behavior. Corresponding result will be presented soon.

  • PDF

Vibration Analysis of a Water Tank Structures (접수탱크구조의 진동해석)

  • Bae, S.Y.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.65-70
    • /
    • 2005
  • A liquid storage rectangular tank structures are used in many fields of civil, mechanical and marine engineering. Especially, Ship structures have many tanks in contact with inner or outer fluid, like ballast, fuel and cargo tanks. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance with exciting force of engine and propeller. Vibration characteristics of these thin walled tanks in contact with fluid near engine propeller are strongly affected by added mass of containing fluid. Therefore it is essentially important to estimate the added mass effect to predict vibration of the tank structures. Many authors have studied vibration of cylindrical and rectangular tanks structures containing fluid. Few research on dynamic interaction among tank walls through fluid are reported in the vibration of rectangular tanks recently. In case of rectangular tanks, structural coupling between adjacent panels and effect of vibration modes of multiple panels on added mass have to be considered. In the present paper, coupling effect between panels of tank structure on added mass of containing fluid, the effect of structural constraint between panels on each vibration mode for fluid region have investigated numerically and experimentally.

  • PDF

SIMPLE MODELS TO INVESTIGATE THE EFFECT OF VELOCITY DEPENDENT FRICTION ON THE DISC BRAKE SQUEAL NOISE

  • Shin, K.;Brennan, M.J.;Joe, Y.G.;Oh, J.E.
    • International Journal of Automotive Technology
    • /
    • v.5 no.1
    • /
    • pp.61-67
    • /
    • 2004
  • This paper suggests two simple two-degree-of-freedom models to describe the dynamical interaction between the pad and the disc of a disc brake system. Separate models for in-plane and out -of-plane vibration are described. Although a brake pad and disc have many modes of vibration, the interaction between a single mode of each component is considered as this is thought to be crucial for brake noise. For both models, the pad and the disc are connected by a sliding friction interface having a velocity dependent friction coefficient. In this paper, it is shown that this friction model acts as negative damping in the system that describes the in-plane vibration, and as negative stiffness in system that describes the out-of-plane vibration. Stability analysis is performed to investigate the conditions under which the systems become unstable. The results of the stability analysis show that the damping is the most important parameter for in-plane vibration, whereas the stiffness is the most important parameter for the out-of-plane vibration.

A study on the vibration cutting of high-hardness mold steel (고경도 금형강의 진동 가공에 대한 연구)

  • Kim, Jong-Su
    • Design & Manufacturing
    • /
    • v.16 no.3
    • /
    • pp.39-43
    • /
    • 2022
  • In this study, we designed an vibration cutting tool that can achieve improvements such as low cutting force, interrupted chip evacuation and better surface quality of cutting performance to obtain high-quality surface roughness and improvement of tool wear, which is an issue in the machining of high-hardness mold steel. Among the resonance frequency modes of the vibration cutting tool, the bending mode was used to maximize the driving amplitude of the vibration tool tip, and the resonance frequency was confirmed through the finite element method. After measuring the actual resonant frequency of the designed tool using an optical fiber sensor, the cutting force and machining surface of vibration cutting and conventional cutting were compared and analyzed in the turning process of high hardness mold steel (STAVAX). As a result of the experiment, the cutting force was reduced by about 20 % compared to the conventional cutting process, and the surface roughness was also improved by about 60 %. This study suggested that the tool wear and surface quality of high-hardness steel can be improved through the vibration cutting method in the machining of high hardness mold steel.