• Title/Summary/Keyword: modes of vibration

Search Result 1,277, Processing Time 0.029 seconds

Estimating peak wind load effects in guyed masts

  • Sparling, B.F.;Wegner, L.D.
    • Wind and Structures
    • /
    • v.10 no.4
    • /
    • pp.347-366
    • /
    • 2007
  • Guyed masts subjected to turbulent winds exhibit complex vibrations featuring many vibration modes, each of which contributes to various structural responses in differing degrees. This dynamic behaviour is further complicated by nonlinear guy cable properties. While previous studies have indicated that conventional frequency domain methods can reliably reproduce load effects within the mast, the system linearization required to perform such an analysis makes it difficult to relate these results directly to corresponding guy forces. As a result, the estimation of peak load effects arising jointly from the structural action of the mast and guys, such as leg loads produced as a result of guy reactions and mast bending moments, is uncertain. A numerical study was therefore undertaken to study peak load effects in a 295 m tall guyed mast acted on by simulated turbulent wind. Responses calculated explicitly from nonlinear time domain finite element analyses were compared with approximate methods in the frequency domain for estimating peak values of selected responses, including guy tension, mast axial loads and mast leg loads. It was found that these peak dynamic load effects could be accurately estimated from frequency domain analysis results by employing simple, slightly conservative assumptions regarding the correlation of related effects.

Optimal feedback control of a flexible one-link robotic manipulator (유연한 단일링크 로봇 조작기의 최적귀환제어)

  • 하영균;김승호;이상조;박영필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.923-934
    • /
    • 1987
  • A flexible one-link robotic manipulator is modelled as a rotating cantilever beam with a hub and tip mass. An active control law is developed with consideration of the distributed flexibility of the arm. Equation of motion is derived by Hamilton's principle and, for modal control, represented as state variable form using Galerkin's mode summation method. Feedback coefficients are chosen to minimize the linear quadratic performance index(PI). To reconstruct the complete state vector from the measurements, an observer is proposed. In order to suppress vibration of the manipulator arm to desirable extent and to obtain accuracy of the positioning, weighting factor of input in PI is adjusted. Spillover effect due to the controller which controls several important modes is examined. Experiment is also performed to validate the theoretical analysis.

Squeal Analysis of Disc Brake Using Analytical-FE Squeal Model (스퀼융합모델을 이용한 디스크 브레이크 스퀼 소음 연구)

  • Kang, Jaeyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6406-6411
    • /
    • 2014
  • This paper presents the analytical-FE (finite element) squeal model, which can provide the efficient simulation time and accuracy. The system geometry and the extraction of the vibration modes were constructed using the finite element method. Instead, the friction contact model was derived from theoretical contact kinematics of the rotating disc and the stationary pads. This modeling procedure was incorporated into the perturbed equations of motion based on the finite elements of the system. Throughout the analytical-FE squeal model, the accuracy of linear stability analysis and the simulation time of FE squeal analysis were improved. In addition, the sensitivity of contact stiffness on brake squeal and the mode-coupling mechanism were provided by the system parameter study.

A Study on Analysis of Dynamic Characteristics and Evaluation of Dynamic Compliance of a 5-Axis Multi-tasking Machine Tool by Using F.E.M and Exciter Test (유한요소법과 가진시험법을 이용한 다기능 5축 복합가공기의 동특성 해석 및 동적 컴플라이언스 평가에 관한 연구)

  • Jang, Sung-Hyun;Choi, Young-Hyu;Ha, Jong-Sik
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.162-169
    • /
    • 2009
  • This paper describes a study on dynamic characteristics analysis and dynamic compliance evaluation of a 5-axis multi-tasking machine tool of ram-head type. Structural dynamics analysis and evaluation are necessary to machine tool design and development to secure good machine tool performance against tough and harsh machining conditions. In this study, natural frequencies and corresponding vibration modes of the machine tool structure were analyzed by using both F.E.M. modal analysis and impulse hammer test. Furthermore, dynamic compliance of the machine tool was analyzed by using F.E.M. and also measured by using a hydraulic exciter test. Both the theoretical analysis and experimental test results showed good agreement with each other.

Driving Characteristic of Ultrasonic Linear Motor with V-type (V-형 선형 초음파 모터의 구동 특성)

  • Jeong, Seong-Su;Seo, San-Dong;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.274-275
    • /
    • 2006
  • A linear ultrasonic motor was designed by a combination of the longitudinal and bending mode. Linear ultrasonic motors are based on an elliptical motion on the surface of elastic body, such as bar or plates. The corresponding eigen-mode of one resonance frequency can be excited twice at the same time with a phase shift of 90 degrees in space and time. That is excite symmetric and anti-symmetric modes. Then it determines the thrust and speed of the motor. Linear ultrasonic motors are investigated experimentally in according to be fabricated a general classification to motor structure and material characteristic. There was the first to simulate as use of finite element analysis ANSYS 9.0. The AL-T2W8-ARM14-LEG18-ANGLE80 motor has a maxim efficiency 17 [%] under the speed 0.14 [m/s], thrust 345 [gf] and preload 280 [gf], operating frequency is 57.6 [kHz].

  • PDF

Influence of transient surface hydrogen on Aluminum catalyzed Silicon nanowire growth

  • Sin, Nae-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.125.2-125.2
    • /
    • 2016
  • Semiconductor nanowires are essential building blocks for various nanotechnologies including energy conversion, optoelectronics, and thermoelectric devices. Bottom-up synthetic approach utilizing metal catalyst and vapor phase precursor molecules (i.e., vapor - liquid - solid (VLS) method) is widely employed to grow semiconductor nanowires. Al has received attention as growth catalyst since it is free from contamination issue of Si nanowire leading to the deterioration of electrical properties. Al-catalyzed Si nanowire growth, however, unlike Au-Si system, has relatively narrow window for stable growth, showing highly tapered sidewall structure at high temperature condition. Although surface chemistry is generally known for its role on the crystal growth, it is still unclear how surface adsorbates such as hydrogen atoms and the nanowire sidewall morphology interrelate in VLS growth. Here, we use real-time in situ infrared spectroscopy to confirm the presence of surface hydrogen atoms chemisorbed on Si nanowire sidewalls grown from Al catalyst and demonstrate they are necessary to prevent unwanted tapering of nanowire. We analyze the surface coverage of hydrogen atoms quantitatively via comparison of Si-H vibration modes measured during growth with those obtained from postgrowth measurement. Our findings suggest that the surface adsorbed hydrogen plays a critical role in preventing nanowire sidewall tapering and provide new insights for the role of surface chemistry in VLS growth.

  • PDF

Front Aluminum Subframe of High Level Vacuum Die-casting (고진공 다이캐스팅 공법 적용한 알루미늄 서브프레임 개발)

  • Cho, Young-Gun;Lim, Tae-Seong;Jang, Sang-Gil;Cho, Cheol-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.52-59
    • /
    • 2012
  • The subframe has been generally manufactured by using stamped steel material. Recently, automotive designers are considering aluminum as lightweight material. This paper describes the development process of an aluminum subframe which is made by high level vacuum die casting process, which is beneficial for minimizing gas contents and material properties. The weight of manufactured subframe is reduced by 4kg with the comparison of steel subframe. The aluminum subframe is packaged for the current vehicle layout and the imposed requirement is to attain a better structural performance that is evaluated in terms of mounting stiffness, noise and vibration, and endurance performance. The NVH evaluation results show that sound level is decreased by 8dB with the help of high roll-rod mounting stiffness as well as high structural modes.

Effects of diaphragm flexibility on the seismic design acceleration of precast concrete diaphragms

  • Zhang, Dichuan;Fleischman, Robert B.;Lee, Deuckhang
    • Computers and Concrete
    • /
    • v.25 no.3
    • /
    • pp.273-282
    • /
    • 2020
  • A new seismic design methodology for precast concrete diaphragms has been developed and incorporated into the current American seismic design code. This design methodology recognizes that diaphragm inertial forces during earthquakes are highly influenced by higher dynamic vibration modes and incorporates the higher mode effect into the diaphragm seismic design acceleration determination using a first mode reduced method, which applies the response modification coefficient only to the first mode response but keeps the higher mode response unreduced. However the first mode reduced method does not consider effects of diaphragm flexibility, which plays an important role on the diaphragm seismic response especially for the precast concrete diaphragm. Therefore this paper investigated the effect of diaphragm flexibility on the diaphragm seismic design acceleration for precast concrete shear wall structures through parametric studies. Several design parameters were considered including number of stories, diaphragm geometries and stiffness. It was found that the diaphragm flexibility can change the structural dynamic properties and amplify the diaphragm acceleration during earthquakes. Design equations for mode contribution factors considering the diaphragm flexibility were first established through modal analyses to modify the first mode reduced method in the current code. The modified first mode reduced method has then been verified through nonlinear time history analyses.

Wear Progress Model by Impact Fretting in Steam Generator Tube (충격 프레팅에 의한 증기발생기 세관 마모손상 진행모델)

  • Park, Chi-Yong;Lee, Jeong-Kun;Kim, Tae-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.10
    • /
    • pp.817-822
    • /
    • 2008
  • Fretting wear is one of the important degradation mechanisms of steam generator tubes in the nuclear power plants. Especially, impact fretting wear occurred between steam generator tubes and tube support plates or anti-vibration bar. Various tests have been carried out to investigate the wear mechanisms and to report the wear coefficients. Those are fruitful to get insight for the wear damage of steam generator tubes; however, most wear researches have concentrated on sliding wear of the steam generator tubes, which may not represent the wear loading modes in real plants. In the present work, impact fretting tests of steam generator tube were carried out. A wear progress model for impact-fretting wear has been investigated and proposed. The proposed wear progress model of impact-fretting wear is as follows; oxide film breaking step at the initial stage, and layer formation step, energy accumulation step and finally particle torn out step which is followed by layer formation in the stable impact-fretting progress. The wear coefficient according to the work-rate model has been also compared with one between tube and support.

Synthesis and Characterization of the Layered Type $(C_nH_{2n+1}NH_3)_2PbCl_4$ System

  • Lee, Su Jong;Kim, Gye Ya;O, Eun Ju;Kim, Gyu Hong;Yeo, Cheol Hyeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.3
    • /
    • pp.317-320
    • /
    • 2000
  • Layered $K_2NiF_4$type ($C_nH_{2n+1}NH_3)_2PbCl_4$(n=6, 8 and 10) system, or alkylammonium tetrachloroplumbate compound, has been synthesized from $PbCl_2$ and $C_nH_{2n+1}NH_3Cl$ solutions under argon ambient pressure for 12hrs at $90^{\circ}C$. The crystal structure of the compound has been analyzed using X-ray powder diffaction in the range of $5^{\circ}{\leq}2{\theta}{\leq}55^{\circ}$, and all samples assigned to an orthorhombic system. Local distances of the Pb-Cl bond have been determined by Pb $L_{III}$-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. The vibration modes of alkylammonium chains and the absorpton peaks of an excition have been examined by FT-IR and UV-Vis. reflectance spectra, respectively. The phase transition temperatures of the compounds have been studied by using DSC. According to the thermal analysis, two phase transition temperatures have been observed in the compositons of n=8 and 10.