• Title/Summary/Keyword: modes of vibration

Search Result 1,277, Processing Time 0.027 seconds

Response of structure with controlled uplift using footing weight

  • Qin, X.;Chouw, N.
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.555-564
    • /
    • 2018
  • Allowing structures to uplift in earthquakes can significantly reduce or even avoid the development of plastic hinges within the structure. The permanent deformations in the structure can thus be minimized. However, uplift of footings can cause additional horizontal movements of a structure. With an increase in movement relative to adjacent structures, the probability of pounding between structures increases. This experimental study reveals that the footing mass can be used to control the vertical displacement of footing and thus reduce the horizontal displacements of an upliftable structure. A four storey model structure with plastic hinges and uplift capability was considered. Shake table tests using ten different earthquake records were conducted. Three different footing masses were considered. It is found that the amplitude of footing uplift can be greatly reduced by increasing the mass of the footing. As a result, allowing structural uplift does not necessary increase the horizontal displacement of the structure. The results show that with increasing footing weight, the interaction between structural and footing response can increase the contribution of the higher modes to the structural response. Consequently, the induced vibrations on secondary structure increase.

Multiple tuned mass dampers for controlling coupled buffeting and flutter of long-span bridges

  • Lin, Yuh-Yi;Cheng, Chii-Ming;Lee, Chung-Hau
    • Wind and Structures
    • /
    • v.2 no.4
    • /
    • pp.267-284
    • /
    • 1999
  • Multiple tuned mass dampers are proposed to suppress the vertical and torsional buffeting and to increase the aerodynamic stability of long-span bridges. Each damper has vertical and torsional frequencies, which are tuned to the corresponding frequencies of the structural modes to suppress the resonant effects. These proposed dampers maintain the advantage of traditional multiple mass dampers, but have the added capability of simultaneously controlling vertical and torsional buffeting responses. The aerodynamic coupling is incorporated into the formulations, allowing this model to effectively increase the critical speed of a bridge for either single-degree-of-freedom flutter or coupled flutter. The reduction of dynamic response and the increase of the critical speed through the attachment of the proposed dampers to the bridge are also discussed. Through a parametric analysis, the characteristics of the multiple tuned mass dampers are studied and the design parameters - including mass, damping, frequency bandwidth, and total number of dampers - are proposed. The results indicate that the proposed dampers effectively suppress the vertical and the torsional buffeting and increase the structural stability. Moreover, these tuned mass dampers, designed within the recommended parameters, are not only more effective but also more robust than a single TMD against wind-induced vibration.

Improvement of Dynamic Characteristics for Optical Pickup Actuator using Finite Difference Scheme and Automated Design Synthesis (유한차분법과 ADS(Automated Design Synthesis)를 이용한 광픽업 액추에이터의 동특성 개선)

  • Jung, Gi-Won;Lee, Jin-Woo;Lee, Dong-Ju;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.1997-2003
    • /
    • 2003
  • Recently, there have been many researches and developments in optical disc drive by high density of track and high access speed. Therefore, the optical pick-up should guarantee highly accurate dynamic characteristics for the wide bandwidth in order to cope with this trend. These demands for optical pick-up actuator can be solved by improvements of lens-holder through the following methods. The first way is the analysis of the sensitivity matrix of design variables for vibration modes after appropriate design parameters are selected like shapes and local dimensions of a lens-holder. The second way is the optimization of design variables by calculating sequential linear programming after the problem of extending bandwidth are converted to problem of minimizing adequate objective function. In the result, modified FE model is obtained through several iterations by finite difference scheme(FDS). While results of the first way show better convergence of the target frequency, the second result shows better reduction of mass increase.

Experimental investigation on flow field around a flapping plate with single degree of freedom

  • Hanyu Wang;Chuan Lu;Wenhai Qu;Jinbiao Xiong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.1999-2010
    • /
    • 2023
  • Undesirable flapping motion of discs can cause the failure of swing check valves in nuclear passive safety systems. Time-resolved particle image velocimetry (PIV) was employed to investigate the flow characteristics around a free-to-rotate plate and the motion response, with the Reynolds numbers, based on the hydraulic diameter of the channel, from 1.32 × 104 to 3.95 × 104. Appreciable flapping motion (±3.52°) appeared at the Reynolds number of 2.6 × 104 with the frequency of 5.08 Hz. In the low-Reynolds-number case, the plate showed negligible flapping. In the high-Reynolds-number case, the deflection angle increased with reduced flapping amplitude. The torque from the fluid determined the flapping amplitude. In the low-Reynolds-number case, Karman vortices were absent. With increasing Reynolds numbers, Karman vortices developed behind the plate with larger deflection angles. Strong interaction between the wake flow from the leading and trailing edge of the plate was observed. Based on power spectrum density (PSD) analysis, the vortex shedding frequency coincided with the flapping frequency, and the amplitude was positively correlated to the strength of the vortices. Proper orthogonal decomposition (POD) modes evince that, in the case of appreciable motion, coherent structures exhibited a larger spatial scale, enhancing the magnitude of the external torque on the plate.

Automation of One-Dimensional Finite Element Analysis of a Direct-Connection Spindle System of Machine Tools Using ANSYS (ANSYS를 활용한 공작기계 직결주축 시스템의 1차원 유한요소해석 자동화)

  • Choi, Jin-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.127-133
    • /
    • 2015
  • In this study, an analytical model was developed for one-dimensional finite element analysis (1D FEA) of a spindle system of machine tools and then implemented to automate the FEA as a tool. FEA, with its vibration characteristics such as natural frequencies and modes, was performed using the universal FEA software ANSYS. VBA of EXCEL was used to provide the programming environment for its implementation. This enabled graphic user interfaces (GUIs) to be developed to allow interactions of users with the tool and, in addition, an EXCEL spreadsheet to be linked with the tool for data arrangement. The language of ANSYS was used to develop a code to perform the FEA. It generates an analytical model of the spindle system based on the information at the GUIs and subsequently performs the FEA based on the model. Automation helps identify the near-optimal design of the spindle system with minimum time and efforts.

FEM Analysis on the Characteristics of Piezoelectric Ceramics Using $L_{1}-B_{4}$ Vibration mode ($L_{1}-B_{4}$ 진동모드를 이용하는 압전 세라믹스의 유한요소 해석)

  • 김범진;정동석;김태열;박태곤;김명호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.393-397
    • /
    • 2001
  • A linear ultrasonic motor was designed by a combination of the first longitudinal and fourth bending mode, the motor consisted of a straight aluminum alloys bar bonded with a piezoelectric ceramics element as a driving element. That is, L$_1$-B$_4$ linear ultrasonic motor can be constructed using a multi-mode vibrator of longitudinal and bending modes. The simulation with variation of material characteristics of piezoceramic were performed as use of finite element analysis ANSYS 5.5, such as elastic compliance, piezoelectric constant, electro-mechanical coupling coefficient, poisson's ratio and density. The results of simulation, elastic compliance constant s$_{11}$ and piezoelectric constant d$_{31}$ had the most of influence on the elliptic-motion. This results consist with using transverse effect of material. The used motor were piezoceramics of 4 layers, and the dimensions were 65$\times$5$\times$3.5mm(LxWxt).).

  • PDF

Rotordynamic Design and Analysis of the Rotor-Bearing System of a 500Wh Flywheel Energy Storage Device (플라이휠 에너지 저장장치 회전체계의 동역학적 설계및 해석)

  • 최상규;김영철;경진호
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.81-86
    • /
    • 1998
  • A 500Wh class high-speed Flywheel Energy Storage System (FESS) driven by a built-in BLDC motor/generator has been designed, which runs from 30000 to 60000rpm nominally. Due to the motor/generator inside, the flywheel rotor made of composites supported by PM/EM hybrid bearing system has a shape of bell or pendulum and thus requires accurate rotordynamic analysis and prediction of its dynamic behavior to secure the operating reliability. Rotordynamic analyses of the flywheel rotor-bearing system revealed that the bell shaped rotor has two conical rigid-body modes in the system operating range and the first conical mode, of which nodal point lies in the radial EM bearing position, can adversely affect the dynamic response of the rotor at the corresponding critical speed. To eliminate the possibility of wild behavior of the rotor, two guide bearings are adopted at the upper end of the rotor and motor/generator. It was also revealed that the EM bearing stiffness if 0.5~1.0E+6 N/m and damping of 2000 Ns/m are favirable for smooth operation of the system around the 2nd critical speed.

  • PDF

A model experiment of damage detection for offshore jacket platforms based on partial measurement

  • Shi, Xiang;Li, Hua-Jun;Yang, Yong-Chun;Gong, Chen
    • Structural Engineering and Mechanics
    • /
    • v.29 no.3
    • /
    • pp.311-325
    • /
    • 2008
  • Noting that damage occurrence of offshore jacket platforms is concentrated in two structural regions that are in the vicinity of still water surface and close to the seabed, a damage detection method by using only partial measurement of vibration in a suspect region was presented in this paper, which can not only locate damaged members but also evaluate damage severities. Then employing an experiment platform model under white-noise ground excitation by shaking table and using modal parameters of the first three modes identified by a scalar-type ARMA method on undamaged and damaged structures, the feasibility of the damage detection method was discussed. Modal parameters from eigenvalue analysis on the structural FEM model were also used to help the discussions. It is demonstrated that the damage detection algorithm is feasible on damage location and severity evaluation for broken slanted braces and it is robust against the errors of baseline FEM model to real structure when the principal errors is formed by difference of modal frequencies. It is also found that Z-value changes of modal shapes also play a role in the precise detection of damage.

Synthesis and Characteristics of Blue Light Emitting Soluble PPV Copolymer (청색 발광 가용성 PPV 공중합체의 합성 및 특성)

  • 이경민;최병수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.2
    • /
    • pp.145-151
    • /
    • 2001
  • In this study, blue light emiting, soluble PPV copolymers were synthesized by Witting reaction and characterized. ITO/copolymer/Ca and ITO/copolymer/A1 structured light emitting diodes(LED) were fabricated and their I-V characteristics were examined. Copolymers showed $\pi$-$\pi$ transition in UV-Vis./NIR spectra. The PL and abosorption spectrum showed the symmetric vibration modes with mirror images which means that copolymers are highly aligned. By introducing aliphatic hydrocarbon group on polymer main chain, the solubility of copolymers was improved and no significant effects of substituent were observed. The band offset of copolymers are well suited as light emitting material for LED application than monomer or oligomer does. THe band offset of copolymers is ∼3eV in PL spectrum and the threshold voltages of ITO/copolymer/Ca and ITO/copolymer/Al structured LED 3V, 12V respectively. In the case of ITO/copolymer/Ca LED, it is believed that the amount of electrons and holes is well balanced and the recombination of opposite charges occurs easily because the work functions of Ca and Al electrodes are 2.9 and 4.3eV respectively and the difference in barrier height between polymer and electrode was small.

  • PDF

Wave shape analysis of seismic records at borehole of TTRH02 and IWTH25 (KiK-net)

  • Kamagata, Shuichi
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.297-312
    • /
    • 2020
  • The KiK-net by NIED is a vertical array measurement system. In the database of KiK-net, singular pulse waves were observed in the seismic record at the borehole of TTRH02 during the mainshock (the magnitude of Japan Meteorological Agency (MJ) 7.3, MW 6.8) and aftershock (Mj 4.2) of Tottori-ken Seibu earthquake in 2000. Singular pulse waves were also detected in the seismic records at the borehole of IWTH25 during the Iwate-Miyagi Nairiku earthquake in 2008 (MJ 7.2, MW 6.9). These pulse waves are investigated by using the wave shape analysis methods, e.g., the non-stationary Fourier spectra and the double integrated displacement profiles. Two types of vibration modes are discriminated as the occurrence mechanism of the singular pulse waves. One corresponds to the reversal points in the displacement profile with the amplitude from 10-4 m to 10-1 m, which is mainly related to the fault activity and the amplification pass including the mechanical amplification (collision) of the seismograph in the casing pipe. The other is the cyclic pulse waves in the interval of reversal points, which is estimated as the backlash of the seismograph itself with the amplitude from 10-5 m to 10-4 m.