• Title/Summary/Keyword: moderate seismicity

Search Result 75, Processing Time 0.03 seconds

Seismic Design of Reinforced Concrete Structures of Limited Ductility in New Zealand Standard (뉴질랜드 기준에서의 제한된 연성의 RC 구조물 내진설계)

  • 이한선
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.288-295
    • /
    • 2000
  • As the level of earthquake intensity in Korea is considered to be moderate, some structures or structural elements may be subjected to the reduced ductility demand, in contrast to the structures in high seismicity, due to the large inherent strength induced by gravity loads. New Zealand Standard(NZS) deals with these structures within the category of structures of limited ductility. This paper briefly reviews the concept of structures of limited ductility in NZS, and its applicability to Korean case. A structural wall system which is used as the structural system for typical apartments is taken as an example for the illustration.

  • PDF

Review of Design Provisions for Earthquake Resistance of RC Structures in Eurocode 8 (RC 구조물에 대한 Eurocode 8의 내진설계 규준 검토)

  • 이한선;허윤섭;이주은
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.677-682
    • /
    • 1999
  • In this paper, the basic concepts and main characteristics in Eurocode 8, which deals with earthquake-resistant design, are reviewed regarding the design of reinforced concrete structures. Eurocode uses the limit-state design method to satisfy the requirements of safety and serviceability. This kind of information can serve to establish the up-coming Korean seismic code which is comprehensive and appropriate to the moderate seismicity region by constituting an important part in the basic data-pool.

  • PDF

Earthquake Resistance of Masonry Infilled Wall (조적 채움벽의 내진성)

  • 이한선;우성우;유은진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.93-98
    • /
    • 2000
  • The objective of this study is to investigate the results of researches which have been conducted throughout the world and in Korea concerning the behavior modes of masonry infill panels and frames. The influence of masonry infill panels on the seismic behavior of RC frames must be considered in the design and evaluation procedure though current code provisions do not generally require explicitly this consideration. However, since the level of the earthquake intensity in Korea is assumed to be moderate, the masonry infill panels may cause the different effect to the structure from those in high seismicity region and this difference should be studied in depth in the future.

  • PDF

DEVELOPMENT OF SEISMIC DESIGN CODES OF KOREA

  • Chang, Sung-Pil;Kim, Jae-Kwan;Lee, Jae-Hoon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.319-331
    • /
    • 1999
  • The seismic hazard of Korea is briefly described. The seismic design requirements design earthquake levels and design response spectrum that are going to be adopted in the future code system are introduced. Characteristics of ground motion and seismic responses of structures in low to moderate seismicity regions are briefly described. The concept of limited ductility design that seems appropriate for the seismic design in Korea is explained.

  • PDF

Quasi-Static Test for Seismic Performance of R/C Bridge Piers Retrofitted with Glassfibers (준정적실험에 의한 섬유보강된 철근콘크리트 교각의 내진성능 평가)

  • 이대형;이재형;정영수;박진영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.871-876
    • /
    • 2001
  • Recent earthquakes in California and Japan caused extensive damage to highway bridge structures. It is also thought that during probable earthquakes bridge structures in Korea could be failed due to the structural deficiencies, which were nonseismically designed and constructed before 1992. In these regards, innovative strengthening methods have been developed to repair reinforced concrete bridge columns, especially by glassfiber sheet bonding methods which are widely used today. The primary objective of this research is to investigate the seismic behavior of RC bridge columns retrofitted with composite straps and to propose pertinent guidelines of repair and rehabilitation method for earthquake resistant design procedure of RC bridges which are located in low or moderate seismicity regions. Six scaled-down concrete test specimens were made with test variables such as lap splice ratio, axial force ratio, confinement ratio, composite straps in the plastic hinge region. Pertinent design guidelines could be developed for the earthquake resistant design of RC bridge piers retrofitted with glassfibers in low or moderate seismic region.

  • PDF

Ductility Demand based Seismic Design for RC Bridge Columns (철근콘크리트 교각의 연성요구량에 따른 내진설계)

  • 이재훈;손혁수;고성현;최진호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.316-321
    • /
    • 2002
  • The current seismic design criteria of the Korea Design Specifications for Highway Bridge (KDSHB 2000) adopted the seismic design concept and requirements of the AASHTO specifications. In order to obtain full ductile behavior under seismic loads, i.e. when applied seismic force is larger than design flexural strength of column section, a response modification factor is used. For the moderate seismicity regions, a design based on required ductility and required transverse reinforcement might be a reasonable approach. Ductility demand design or performance based design might be an appropriate approach especially for regions of moderate seismic risk. The procedure and application of this design approach are presented in this paper.

  • PDF

Evaluation of Seismic Responses for Building in Moderate Seismicity Regions Considered Vertical Earthquake Ground Motions (지진지반운동의 수직성분을 고려한 증진지역 건축구조물의 지진응답평가)

  • Han, Duck-Jeon;Ko, Hyun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.1
    • /
    • pp.69-78
    • /
    • 2009
  • Recent earthquake, such as the Northridge(1994), the Kobe(1995) and the Izmit(1990) earthquakes, gave serious damage in various buildings and bridges by the vertical seismic component. Most of the seismic designs neglect the vertical seismic component for usual frame structures. The purpose of this study is to evaluate the effects of the vertical seismic component and to compare the axial force of columns and plastic rotation angle of the analytical models in these effects. The vertical seismic component produced a large increment of axial force in columns. And the vertical seismic component caused a significant increase of the damage in the columns. As analysis result, increase of axial force cause the damage of columns and give possibility of story collapse mechanism of the structure system. Therefore, area that near fault ground motion is expected may be consider the effect of vertical component of seismic ground motions.

  • PDF

Comments on Seismicity and Crustal Structure of the Korean Peninsula (한반도의 지진활동과 지각구조)

  • Lee, Kie-Hwa
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.256-267
    • /
    • 2010
  • Earthquakes in the Korean Peninsula occur along the faults formed and boundaries between major geological units ruptured due to violent tectonic activities during the Mesozoic. E-W and/or ENE-SSW compressive stress regime resulting from collisions between the Eurasian plate and neighbouring the Indian plate, the Pacific plate and the Philippine plate trigger Korean earthquakes of thrust faulting with predominant strike-slip components along the mostly NNE-SSW trending active faults. Seismicity of the Korean peninsula has been moderate to low during the past 20 centuries except for the period from the 15th to the 18th centuries of exceptionally high seismicity, showing the typical irregularity of intraplate seismicity. The structure of the Korean peninsula is rather homogeneous without the Conrad discontinuity sharply dividing the upper and lower crust. Lateral heterogeneities exist in the crust. The crust with an average thickness of about 33 km is thicker in the mountainous region than the plain due to the Airy-type isostatic equilibrium maintained in the peninsula. Crustal P-wave velocity with average of about 6.3 km/sec increases gradually from the near surface to the Moho. The upper mantle P-wave (Pn) velocity is about 7.8 km/sec.

Simplified elastic design checks for torsionally balanced and unbalanced low-medium rise buildings in lower seismicity regions

  • Lam, Nelson T.K.;Wilson, John L.;Lumantarna, Elisa
    • Earthquakes and Structures
    • /
    • v.11 no.5
    • /
    • pp.741-777
    • /
    • 2016
  • A simplified approach of assessing torsionally balanced (TB) and torsionally unbalanced (TU) low-medium rise buildings of up to 30 m in height is presented in this paper for regions of low-to-moderate seismicity. The Generalised Force Method of Analysis for TB buildings which is illustrated in the early part of the paper involves calculation of the deflection profile of the building in a 2D analysis in order that a capacity diagram can be constructed to intercept with the acceleration-displacement response spectrum diagram representing seismic actions. This approach of calculation on the planar model of a building which involves applying lateral forces to the building (waiving away the need of a dynamic analysis and yet obtaining similar results) has been adapted for determining the deflection behaviour of a TU building in the later part of the paper. Another key original contribution to knowledge is taking into account the strong dependence of the torsional response behaviour of the building on the periodic properties of the applied excitations in relation to the natural periods of vibration of the building. Many of the trends presented are not reflected in provisions of major codes of practices for the seismic design of buildings. The deflection behaviour of the building in response to displacement controlled (DC) excitations is in stark contrast to behaviour in acceleration controlled (AC), or velocity controlled (VC), conditions, and is much easier to generalise. Although DC conditions are rare with buildings not exceeding 30 m in height displacement estimates based on such conditions can be taken as upper bound estimates in order that a conservative prediction of the displacement profile at the edge of a TU building can be obtained conveniently by the use of a constant amplification factor to scale results from planar analysis.

Optimum Life-Cycle Cost-Effective Seismic Design for Continuous PSC Bridges Considering Lifetime Expected Seismic Risks (구조 수명간 지진위험도를 고려한 연속 PSC교의 LCC 최적 내진설계)

  • Cho Hyo Nam;Lee Kwang Min;Park Kyung Hoon;Kim Pyung Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.720-723
    • /
    • 2004
  • This study is intended to propose a systematic approach for determining optimum Life-Cycle Cost (LCC)-effective seismic design for continuous PSC bridges considering lifetime expected seismic risks. In the paper, a set of cost function for LCC analysis of bridges is proposed. The total LCC functions consist of initial cost and direct/indirect damage costs considering repair/replacement costs, human losses and property damage costs, road user costs, and indirect socio-economic losses. The damage costs are expressed in terms of Park-Ang median global damage indices (Park and Ang, 1985) and lifetime damage probabilities. The proposed approach is applied to model bridges of both moderate seismicity regions like Korea and high seismicity regions like Japan. Since, in case of bridges, a number of parameters may have an influence on optimal target reliability, various sensitivity analyses are performed in this study. It may be expected that the proposed approach can be effectively utilized for the development of cost-effective performance criteria for design and upgrading of various types of bridges as well as continuous PC bridges.

  • PDF