• Title/Summary/Keyword: models, chemical

Search Result 1,263, Processing Time 0.024 seconds

A review on viscocapillary models of pre-metered coating flows

  • Youn, Suk-Il;Kim, Su-Yeon;Shin, Dong-Myeong;Lee, Joo-Sung;Jung, Hyun-Wook;Hyun, Jae-Chun
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.4
    • /
    • pp.209-215
    • /
    • 2006
  • Recent research results on viscocapillary models of various pre-metered coating flows such as curtain, slide, and slot coatings have been reviewed in this paper. Such one-dimensional models have been simplified from two-dimensional Navier-Stokes equations for viscous coating flows with free surfaces, using integral momentum balances and lubrication approximation. It has been found that these viscocapillary models is capable of predicting flow dynamics in various coating systems, providing the good agreement with results by 2-D models.

Application of Thermodynamic Models for Analysis on SI Thermochemical Hydrogen Production Process (SI 열화학 수소 생산 공정의 분석을 위한 열역학 모델의 적용)

  • Lee, Jun Kyu;Kim, Ki-Sub;Park, Byung Heung
    • Journal of Institute of Convergence Technology
    • /
    • v.2 no.2
    • /
    • pp.30-34
    • /
    • 2012
  • The SI thermochemical cycle process accomplishes water splitting through distinctive three chemical reactions. We focused on thermodynamic models applicable to the process. Recently, remarkable models based on the assumed ionic species have been developed to describe highly nonideal behavior on the liquid phase reactions. ElecNRTL models with ionic reactions were proposed in order to provide reliable process simulation results for phase equilibrium calculations in Section II and III. In this study, the current thermodynamic models of SI thermochemical cycle process were briefly described and the calculation results of the applied ElecNRTL models for phase equilibrium calculations were illustrated for binary systems.

  • PDF

A Review on Chemical-Induced Inflammatory Bowel Disease Models in Rodents

  • Randhawa, Puneet Kaur;Singh, Kavinder;Singh, Nirmal;Jaggi, Amteshwar Singh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.4
    • /
    • pp.279-288
    • /
    • 2014
  • Ulcerative colitis and Crohn's disease are a set of chronic, idiopathic, immunological and relapsing inflammatory disorders of the gastrointestinal tract referred to as inflammatory bowel disorder (IBD). Although the etiological factors involved in the perpetuation of IBD remain uncertain, development of various animal models provides new insights to unveil the onset and the progression of IBD. Various chemical-induced colitis models are widely used on laboratory scale. Furthermore, these models closely mimic morphological, histopathological and symptomatical features of human IBD. Among the chemical-induced colitis models, trinitrobenzene sulfonic acid (TNBS)-induced colitis, oxazolone induced-colitis and dextran sulphate sodium (DSS)-induced colitis models are most widely used. TNBS elicits Th-1 driven immune response, whereas oxazolone predominantly exhibits immune response of Th-2 phenotype. DSS-induced colitis model also induces changes in Th-1/Th-2 cytokine profile. The present review discusses the methodology and rationale of using various chemical-induced colitis models for evaluating the pathogenesis of IBD.

Effectiveness Analysis of Chemical Warfare System through Interoperation between Engineering Level and Engagement Level Models : Methodology and Environment (공학급/교전급 모델의 연동 시뮬레이션을 통한 화학전 효과도 분석 : 방법론 및 구현 환경)

  • Seok, Moon-Gi;Song, Hae-Sang;Kim, Tag-Gon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.71-81
    • /
    • 2014
  • It is an important issue to evaluate the effectiveness of chemical warfare through modeling and simulation(M&S) technology. In this paper, we propose the M&S methodology and environment for the chemical warfare for effectiveness analysis. In detail, for modeling perspective, we propose three fundamental component models according to their behaviors, which are a chemical weapon, a detecting device system, and an engaging unit system. Among proposed models, the chemical weapon and the detecting device system models are represented by engineering-level system models, whereas the engaging unit system model are described as an engagement-level system model. For simulation perspective, we apply a hybrid simulation environment using High Level Architecture (HLA) to interoperate with the proposed engineering and engagement-level models. The proposed M&S methodology and environment enables to evaluate the effectiveness of the chemical warfare system considering the doctrines, the performance of device or weapon, and weather factors. To verify the efficiency of the proposed methodology and environment, we experimented three categorized case studies, which are related with those considering factors.

Operation Modes Classification of Chemical Processes for History Data-Based Fault Diagnosis Methods (데이터 기반 이상진단법을 위한 화학공정의 조업모드 판별)

  • Lee, Chang Jun;Ko, Jae Wook;Lee, Gibaek
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.383-388
    • /
    • 2008
  • The safe and efficient operation of the chemical processes has become one of the primary concerns of chemical companies, and a variety of fault diagnosis methods have been developed to diagnose faults when abnormal situations arise. Recently, many research efforts have focused on fault diagnosis methods based on quantitative history data-based methods such as statistical models. However, when the history data-based models trained with the data obtained on an operation mode are applied to another operating condition, the models can make continuous wrong diagnosis, and have limits to be applied to real chemical processes with various operation modes. In order to classify operation modes of chemical processes, this study considers three multivariate models of Euclidean distance, FDA (Fisher's Discriminant Analysis), and PCA (principal component analysis), and integrates them with process dynamics to lead dynamic Euclidean distance, dynamic FDA, and dynamic PCA. A case study of the TE (Tennessee Eastman) process having six operation modes illustrates the conclusion that dynamic PCA model shows the best classification performance.

Atomic Scale Modeling of Chemical Mechanical Polishing Process (Chemical Mechanical Polishing 공정에 관한 원자단위 반응 모델링)

  • Byun, Ki-Ryang;Kang, Jeong-Won;Song, Ki-Oh;Hwang, Ho-Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.5
    • /
    • pp.414-422
    • /
    • 2005
  • This paper shows the results of atomistic modeling for the Interaction between spherical nano abrasive and substrate In chemical mechanical polishing processes. Atomistic modeling was achieved from 2-dimensional molecular dynamics simulations using the Lennard-jones 12-6 potentials. We proposed and investigated three mechanical models: (1) Constant Force Model; (2) Constant Depth Model, (3) Variable Force Model, and three chemical models, such as (1) Chemically Reactive Surface Model, (2) Chemically Passivating Surface Model, and (3) Chemically Passivating-reactive Surface Model. From the results obtained from classical molecular dynamics simulations for these models, we concluded that atomistic chemical mechanical polishing model based on both Variable Force Model and Chemically Passivating-reactive Surface Model were the most suitable for realistic simulation of chemical mechanical polishing in the atomic scale. The proposed model can be extended to investigate the 3-dimensional chemical mechanical polishing processes in the atomic scale.

Assessment of quantitative structure-activity relationship of toxicity prediction models for Korean chemical substance control legislation

  • Kim, Kwang-Yon;Shin, Seong Eun;No, Kyoung Tai
    • Environmental Analysis Health and Toxicology
    • /
    • v.30 no.sup
    • /
    • pp.7.1-7.10
    • /
    • 2015
  • Objectives For successful adoption of legislation controlling registration and assessment of chemical substances, it is important to obtain sufficient toxicological experimental evidence and other related information. It is also essential to obtain a sufficient number of predicted risk and toxicity results. Particularly, methods used in predicting toxicities of chemical substances during acquisition of required data, ultimately become an economic method for future dealings with new substances. Although the need for such methods is gradually increasing, the-required information about reliability and applicability range has not been systematically provided. Methods There are various representative environmental and human toxicity models based on quantitative structure-activity relationships (QSAR). Here, we secured the 10 representative QSAR-based prediction models and its information that can make predictions about substances that are expected to be regulated. We used models that predict and confirm usability of the information expected to be collected and submitted according to the legislation. After collecting and evaluating each predictive model and relevant data, we prepared methods quantifying the scientific validity and reliability, which are essential conditions for using predictive models. Results We calculated predicted values for the models. Furthermore, we deduced and compared adequacies of the models using the Alternative non-testing method assessed for Registration, Evaluation, Authorization, and Restriction of Chemicals Substances scoring system, and deduced the applicability domains for each model. Additionally, we calculated and compared inclusion rates of substances expected to be regulated, to confirm the applicability. Conclusions We evaluated and compared the data, adequacy, and applicability of our selected QSAR-based toxicity prediction models, and included them in a database. Based on this data, we aimed to construct a system that can be used with predicted toxicity results. Furthermore, by presenting the suitability of individual predicted results, we aimed to provide a foundation that could be used in actual assessments and regulations.

Modeling Charge Penetration Effects in Water-Water Interactions

  • Choi, Tae Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.2906-2910
    • /
    • 2014
  • This report introduces Gaussian electrostatic models (GEMs) to account for charge penetration effects in water-water interactions, allowing electrostatic interactions to be accurately described. Three different Gaussian electrostatic models, GEM-3S, GEM-5S, and GEM-6S are designed with s-type Gaussian functions. The coefficients and exponents of the Gaussian functions are optimized using the electrostatic potential (ESP) fitting procedure based on that of the MP2/aug-cc-pVTZ method. The electrostatic energies of ten different water dimers that were calculated with GEM-6S agree well with the results of symmetry-adapted perturbation theory (SAPT), indicating that this designed model can be effectively applied to future water models.

Preliminary Study: Comparison of Kinetic Models of Oil Extraction from Vetiver (Vetiveria Zizanioides) by Microwave Hydrodistillation

  • Kusuma, Heri Septya;Rohadi, Taufik Imam;Daniswara, Edwin Fatah;Altway, Ali;Mahfud, Mahfud
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.574-577
    • /
    • 2017
  • In Indonesia, vetiver oil is one commodity that plays an important role in the country's foreign exchange earnings. Currently, the extraction of essential oil from vetiver still uses conventional methods. Therefore, the aim of this study was to know and verify the kinetics and mechanism of microwave hydrodistillation of vetiver based on two models. In this study, microwave hydrodistillation was used to extract essential oils from vetiver. The extraction was carried out in nine extraction cycles of 20 min to 3 hours. The rate constant, the equilibrium extraction capacity, and the initial extraction rate were calculated using the two models. Kinetics of oil extraction from vetiver by microwave hydrodistillation proved that the extraction process was based on the second-order extraction model. The second-order model was satisfactorily applied, with high coefficients of correlation ($R^2=0.9427$), showing that it well described the process.

Rovibrational Energy Transitions and Coupled Chemical Reaction Modeling of H+H2 and He+H2 in DSMC

  • Kim, Jae Gang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.347-359
    • /
    • 2015
  • A method of describing the rovibrational energy transitions and coupled chemical reactions in the direct simulation Monte Carlo (DSMC) calculations is constructed for $H(^2S)+H_2(X^1{\Sigma}_g)$ and $He(^1S)+H_2(X^1{\Sigma}_g)$. First, the state-specific total cross sections for each rovibrational states are proposed to describe the state-resolved elastic collisions. The state-resolved method is constructed to describe the rotational-vibrational-translational (RVT) energy transitions and coupled chemical reactions by these state-specific total cross sections and the rovibrational state-to-state transition cross sections of bound-bound and bound-free transitions. The RVT energy transitions and coupled chemical reactions are calculated by the state-resolved method in various heat bath conditions without relying on a macroscopic properties and phenomenological models of the DSMC. In nonequilibrium heat bath calculations, the state-resolved method are validated with those of the master equation calculations and the existing shock-tube experimental data. In bound-free transitions, the parameters of the existing chemical reaction models of the DSMC are proposed through the calibrations in the thermochemical nonequilibrium conditions. When the bound-free transition component of the state-resolved method is replaced by the existing chemical reaction models, the same agreement can be obtained except total collision energy model.