• 제목/요약/키워드: modeling of the experiment

검색결과 1,305건 처리시간 0.034초

Numerical Study on Laser-driven In-Tube Accelerator (LITA) Performance using a Plasma Size Modeling

  • Kim, Sukyum;Toshiro Ohtani;Akihiro Sasoh;Jeung, In-Seuck;Park, Jeong--Yeol
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.320-324
    • /
    • 2004
  • Laser Propulsion is a device that generates thrust using laser energy. Laser-driven In-Tube Accelerator (LITA) has been developed at Tohoku University. LITA is a laser propulsion system that accelerates an object not in an open air but in a tube. Experiments of vertical launching and pressure measurement on the tube wall were carried out and in order to observe the initial state of plasma and blast wave, the visualization experiment was carried out using the shadowgraph method. In this study, the time variation of pressure on the tube wall is numerically simulated solving Euler equation. In order to model the laser energy, heat source function added to the frozen flow Euler equation. Plasma size from the shadowgraph images was used for the initial condition of laser energy input. For verification of the modeling, these results were compared with the previous experimental and numerical results. From these verifications, an analysis of LITA performance will be investigated.

  • PDF

분리된 원주압 보조 액압유도 역 재드로잉공정에 관한 연구 (Study on the Hydromechanical Reverse Redrawing Pprocess Assisted by Separate Radial Pressure)

  • 김봉종;이동우;양동열;박찬승
    • 대한기계학회논문집A
    • /
    • 제20권12호
    • /
    • pp.3728-3740
    • /
    • 1996
  • High-quality cups of deep drawing ratio of more than four cannot be simply drawn by conventional drawing and redrawing processes. In the present study, after the first deep drawing process, subsequent hydromechanical reverse redrawing with controlled radial pressure is employed. In order to increase the deep drawing ratio up to muchmore than four, the radial pressure should be controlled independently of the chamber pressure and thus an optimum forming condition can be found easily by varying the radial pressure. The process has been subjected to finite element analysis by using the rigid-platic material modeling considering all the frictional conditions induced by the hydrostatic pressure. In order to consider the pressure effect on the sheet, the pressure distributions on the flange part and the side wall part are calculated mumerically from simplified Navier-stokes equation. The comparison of the computation with the experiment has shown that the finite element modeling can be conveniently emplyed for the design of the process with reliability from the viewpoint of formability.

Chemical Equilibrium Modeling for Magnetite-Packed Crevice Chemistry in a Nuclear Steam Generator

  • Bahn, Chi-Bum;Rhee, In-Hyoung;Hwang, Il-Soon;Park, Byung-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권11호
    • /
    • pp.1783-1789
    • /
    • 2005
  • Modeling of a steam generator crevice in a nuclear power system needs to take into account both thermalhydraulic and chemical phenomena. As a first step towards developing a reliable model, a chemical equilibrium model was developed to predict chemical speciation in a magnetite-packed crevice by adopting the “tableau” method. The model was benchmarked with the available experimental data and the maximum deviation did not exceed two orders of magnitude. The developed model was applied to predict the chemical speciation in a magnetite-packed crevice. It was predicted that caustic environment was developed by the concentration of NaOH and the dissolution of magnetite. The model indicated that the dominant aqueous species of iron in the caustic crevice was $FeO_2\;^-$. The increase of electrochemical corrosion potential observed in the experiment was rationalized by the decrease of dissolved hydrogen concentration due to a boiling process. It was predicted that under the deaerated condition magnetite was oxidized to hematite.

Parametric study of population balance model on the DEBORA flow boiling experiment

  • Aljosa Gajsek;Matej Tekavcic;Bostjan Koncar
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.624-635
    • /
    • 2024
  • In two-fluid simulations of flow boiling, the modeling of the mean bubble diameter is a key parameter in the closure relations governing the intefacial transfer of mass, momentum, and energy. Monodispersed approach proved to be insufficient to describe the significant variation in bubble size during flow boiling in a heated pipe. A population balance model (PBM) has been employed to address these shortcomings. During nucleate boiling, vapor bubbles of a certain size are formed on the heated wall, detach and migrate into the bulk flow. These bubbles then grow, shrink or disintegrate by evaporation, condensation, breakage and aggregation. In this study, a parametric analysis of the PBM aggregation and breakage models has been performed to investigate their effect on the radial distribution of the mean bubble diameter and vapor volume fraction. The simulation results are compared with the DEBORA experiments (Garnier et al., 2001). In addition, the influence of PBM parameters on the local distribution of individual bubble size groups was also studied. The results have shown that the modeling of aggregation process has the largest influence on the results and is mainly dictated by the collisions due to flow turbulence.

Effect of inlet throttling on thermohydraulic instability in a large scale water-based RCCS: A system-level analysis with RELAP5-3D

  • Zhiee Jhia Ooi;Qiuping Lv;Rui Hu;Matthew Jasica;Darius Lisowski
    • Nuclear Engineering and Technology
    • /
    • 제56권5호
    • /
    • pp.1902-1912
    • /
    • 2024
  • This paper presents results from system-level modeling of a water-based reactor cavity cooling system using RELAP5-3D. The computational model is benchmarked with experimental data from a half-scale RCCS test facility at Argonne National Laboratory. The model prediction is first compared with a two-phase oscillatory baseline experimental case where mixed accuracy is obtained. The model shows reasonable prediction of mass flow rate, pressure, and temperature but significant overprediction of void fraction. The model prediction is then compared with a fault case where the inlet of the risers is gradually reduced using a throttling valve. As the valve is closed, the model is able to predict some major flow phenomena observed in the experiment such as the dampening of oscillations, the reintroduction of oscillations, as well as boiling, flashing, and geysering in the risers. However, the timeline of these events are not well captured by the model. The model is also used to investigate the evolution of flow regime in the chimney. This work highlights that the semi-empirical constitutive relations used in RELAP-3D could have a strong influence on the accuracy of the model in two-phase oscillatory flows.

방사 왜곡을 포함하는 홀로그래픽 스테레오그램의 수학적 복원 (Numerical Reconstruction of Holographic Stereogram with Radial Distortion)

  • 박지용;강훈종;홍성희;정광모;이승현
    • 한국통신학회논문지
    • /
    • 제38C권10호
    • /
    • pp.911-919
    • /
    • 2013
  • 방사 왜곡이 홀로그래픽 스테레오그램에 미치는 영향을 알아보기 위해, 가상의 3차원 객체를 렌더링하고, 이 객체로부터 원근 투영 이미지를 획득하였다. 획득된 원근 투영 이미지를 재배열 하여 hogel 이미지를 만들고 복원되는 영상을 확인하기 위해 홀로그래픽 스테레오그램의 수학적 복원 알고리즘을 제안하였다. 광학 엔진에 의해 발생 할 수 있는 방사 왜곡을 포함하는 hogel 이미지를 왜곡 정도를 달리하여 만들고, 수학적 복원 알고리즘을 이용하여 복원 하였고, 복원된 영상을 PSNR을 이용하여 비교 하였다.

단일 채널 DPF의 PM 포집 모델링 및 모델 파라미터의 민감도 해석 (Rigorous Modeling of Single Channel DPF Filtration and Sensitivity Analysis of Important Model Parameters)

  • 정승채;박종선;윤웅섭
    • 한국자동차공학회논문집
    • /
    • 제14권6호
    • /
    • pp.127-136
    • /
    • 2006
  • Prediction of diesel particulate filtration is typically made by virtue of modeling of particulate matter(PM) collection. The model is closed with filtration parameters reflecting all small scale phenomena associated with PM trapping, and these parameters are to be traced back by inversely analyzing large-scale empirical data-the pressure drop histories. Included are soot cake permeability, soot cake density, soot density in the porous filter wall, and percolation constant. In the present study, a series of single channel DPF experiment is conducted, pressure histories are inversely analyzed, and the essential filtration parameters are deducted by DPF filtration model formulated with non-linear description of soot cake regression. Sensitivity analyses of model parameters are also made. Results showed that filtration transients are significantly altered by the extent of percolation constant, and the soot density in the porous filter wall is controlling the filtration qualities in deep-bed filtration regime. In addition, effect of soot particle size on filtration quality is distinct in a period of soot cake regime.

Preliminary Characterization of Secondary Illumination at Shackleton Crater Permanently Shadowed Region from ShadowCam Observations and Modeling

  • Prasun Mahanti;Mark Southwick Robinson;David Carl Humm;Robert Vernon Wagner;Nicholas Michael Estes;Jean-Pierre Williams
    • Journal of Astronomy and Space Sciences
    • /
    • 제40권4호
    • /
    • pp.131-148
    • /
    • 2023
  • Lunar permanently shadowed regions (PSRs) never see direct sunlight and are illuminated only by secondary illumination - light reflected from nearby topography. The ShadowCam imaging experiment onboard the Korea Pathfinder Lunar Orbiter is acquiring images of these PSRs. We characterize and discuss the nature of secondary illumination for the Shackleton PSR from ShadowCam radiance-calibrated images. We also use modeling to understand the magnitude and direction of the secondary illumination. Results from our analysis highlight the non-homogeneous, dynamic, and complex nature of PSR secondary lighting. Knowledge of the direction of the secondary illumination is crucial for reli-able interpretation of contrasts observed in ShadowCam images. This preliminary analysis of the floor of Shackleton crater from images acquired over multiple secondary illumination conditions does not reveal indications of exposed surface ice, even though temperatures are constantly below 110K.

Modeling of chloride diffusion in a hydrating concrete incorporating silica fume

  • Wang, Xiao-Yong;Park, Ki-Bong;Lee, Han-Seung
    • Computers and Concrete
    • /
    • 제10권5호
    • /
    • pp.523-539
    • /
    • 2012
  • Silica fume has long been used as a mineral admixture to improve the durability and produce high strength and high performance concrete. And in marine and coastal environments, penetration of chloride ions is one of the main mechanisms causing concrete reinforcement corrosion. In this paper, we proposed a numerical procedure to predict the chloride diffusion in a hydrating silica fume blended concrete. This numerical procedure includes two parts: a hydration model and a chloride diffusion model. The hydration model starts with mix proportions of silica fume blended concrete and considers Portland cement hydration and silica fume reaction respectively. By using the hydration model, the evolution of properties of silica fume blended concrete is predicted as a function of curing age and these properties are adopted as input parameters for the chloride penetration model. Furthermore, based on the modeling of physicochemical processes of diffusion of chloride ion into concrete, the chloride distribution in silica fume blended concrete is evaluated. The prediction results agree well with experiment results of chloride ion concentrations in the hydrating concrete incorporating silica fume.

DEVELOPMENT OF AUGMENTED 3D STEREO URBAN CITY MODELLING SYSTEM BASED ON ANAGLYPH APPROACH

  • Kim, Hak-Hoon;Kim, Seung-Yub;Lee, Ki-Won
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.98-101
    • /
    • 2006
  • In general, stereo images are widely used to remote sensing or photogrametric applications for the purpose of image understanding and feature extraction or cognition. However, the most cases of these stereo-based application deal with 2-D satellite images or the airborne photos so that its main targets are generation of small-scaled or large-scaled DEM(Digital Elevation Model) or DSM(Digital Surface Model), in the 2.5-D. Contrast to these previous approaches, the scope of this study is to investigate 3-D stereo processing and visualization of true geo-referenced 3-D features based on anaglyph technique, and the aim is at the prototype development for stereo visualization system of complex typed 3-D GIS features. As for complex typed 3-D features, the various kinds of urban landscape components are taken into account with their geometric characteristics and attributes. The main functions in this prototype are composed of 3-D feature authoring and modeling along with database schema, stereo matching, and volumetric visualization. Using these functions, several technical aspects for migration into actual 3-D GIS application are provided with experiment results. It is concluded that this result will contribute to more specialized and realistic applications by linking 3-D graphics with geo-spatial information.

  • PDF