• Title/Summary/Keyword: modeling of structures

Search Result 2,250, Processing Time 0.044 seconds

Modeling large underground structures in rock formations

  • e Sousa, Luis Ribeiro;Miranda, Tiago
    • Interaction and multiscale mechanics
    • /
    • v.4 no.1
    • /
    • pp.49-64
    • /
    • 2011
  • A methodology for jointed rock mass characterization starts with a research based on geological data and tests in order to define the geotechnical models used to support the decision about location, orientation and shape of cavities. Afterwards a more detailed characterization of the rock mass is performed allowing the update of the geomechanical parameters defined in the previous stage. The observed results can be also used to re-evaluate the geotechnical model using inverse methodologies. Cases of large underground structures modeling are presented. The first case concerns the modeling of cavities in volcanic formations. Then, an application to a large station from the Metro do Porto project developed in heterogeneous granite formations is also presented. Finally, the last case concerns the modeling of large cavities for a hydroelectric powerhouse complex. The finite element method and finite difference method software used is acquired from Rocscience and ITASCA, respectively.

Data-driven modeling of optimal intensity measure of soil-nailed wall structures

  • Massoumeh Bayat;Mahdi Bayat;Mahmoud Bayat
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.85-92
    • /
    • 2023
  • This article examines the seismic vulnerability of soil nail wall structures. Detailed information regarding finite element modeling has been provided. The fragility function evaluates the relationship between ground motion intensities and the probability of surpassing a specific level of damage. The use of incremental dynamic analysis (IDA) has been applied to the soil nail wall against low to severe ground motions. In the nonlinear dynamic analysis of the soil nail wall, a set of twenty seismic ground motions with varying PGA ranges are used. The numerical results demonstrate that the soil-nailed wall reaction is extremely sensitive to earthquake ground vibrations under different intensity measures (IM). In addition, the analytical fragility curve is provided for various intensity values.

Education and Application of Modeling on 3D Structure using Geogebra (지오지브라를 이용한 3차원 구조물의 모델링 교육과 응용)

  • Chung, Tae-Eun;Kim, Tae-Hwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.2
    • /
    • pp.93-103
    • /
    • 2015
  • In this study, we organize and explain various ways to construct 3D models in the 2D plane using Geogebra, mathematical education software that enables us to visualize dynamically the interaction between algebra and geometry. In these ways, we construct three unit vectors for 3 dimensions at a point on the Cartesian coordinates, on the basis of which we can build up the 3D models by putting together basic mathematical objects like points, lines or planes. We can apply the ways of constructing the 3 dimensions on the Cartesian coordinates to modeling of various structures in the real world, and have chances to translate, rotate, zoom, and even animate the structures by means of slider, one of the very important functions in Geogebra features. This study suggests that the visualizing and dynamic features of Geogebra help for sure to make understood and maximize learning effectiveness on mechanical modeling or the 3D CAD.

Analytical Performance Comparison of Scour Protection of Rubble Mound Structure Shape using Simulation (해석적 모의조파실험을 이용한 해안사석구조물 형상에 따른 해저면 세굴 방지 성능 비교)

  • Kang, Kyoung-Won;Kim, Kee Dong;Han, Tong-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2A
    • /
    • pp.117-122
    • /
    • 2012
  • Coastal structures, constructed for preventing coastal slope erosion, often causes the scour on the boundary between the coastal structure and the sea-bed, which might lead to collapse of coastal structures. To prevent the collapse, the usual upright block type coastal structures can be modified to other forms or systems of coastal structures. To validate the performance of the proposed systems, it is necessary to conduct high cost hydraulic experiments. If numerical modeling can be performed prior to the hydraulic experiments and the performance of the proposed systems is analyzed numerically in advance, the expenses can be reduced significantly by optimizing the number of cases for conducting the experiments. In this study, a fluid-structure interaction analysis procedure is proposed for modeling the hydraulic experiments of costal structures using the finite element package, LS-DYNA. As can be found in the usual hydraulic experiments, fluid velocities of potential scour locations are monitored and analyzed in detail for four types of coastal structures, block, step, trapezoid and rubble mound.

State-of-art on Its Application and Errors in Pushover Analysis of Building Structures (건축물의 내진설계에서 정적 비선형해석의 적용과 오차에 대한 고찰)

  • Jun, Dae-Han;Song, Ho-San
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.103-110
    • /
    • 2004
  • The pushover analysis is becoming a popular tool for seismic design of building structures. In this paper the state-of-art on static nonlinear analysis of building structures is presented with the emphasis on the effects of analysis parameters; i. e., lateral load patterns, modeling of members, and analysis computer programs. The analysed results may have variation even if a same structure is analysed. This paper is to investigate how large the variation is and what the main causes of the variation are. The difference of analysed results, the resultant variation of lateral story shear force and flexural strength of structural members are discussed. The pushover analysis procedure are routinely used in the seismic design of building structures, but some problems must yet be clarified, such as the effects to evaluate the parameters of analysis on the basis of a lateral load patterns and modeling of members.

  • PDF

Validation and Modeling of Drivers and Barriers of Multivendor ATM Technology in India from Suppliers' Perspectives

  • Jyotiranjan Hota;Saboohi Nasim
    • Asia pacific journal of information systems
    • /
    • v.30 no.2
    • /
    • pp.374-396
    • /
    • 2020
  • The purpose of the paper is to apply Total Interpretive Structural Modeling (TISM) used to develop a hierarchy among the key drivers and barriers to multivendor ATM Technology adoption in India from the perspectives of suppliers. TISM approach is an extension of Warfield's (IEEE Transactions: System, Man & Cybernetics 4:405-17, 1974) Interpretive Structural Modeling(ISM) approach. Based on the literature, drivers and barriers for adoption of Multivendor ATM Technology are identified. TISM is used to develop a hierarchical model which states the interpretation of relationship among these drivers and barriers. Hierarchies of all relevant drivers and barriers are developed and significant interrelationship was found out. Implications for the researchers and Industry Practitioner are highlighted. For Researchers, TISM methodology facilitates to further carry out exploratory studies by identifying the factors in technology adoption domain and focus their interactions through hierarchical structures. For Practitioners with suppliers, a list of relevant barriers and drivers to adoption of this technology in India are indications to take a decision to adopt Multivendor ATM Technology in their respective suppliers. The proposed Model developed through qualitative Modeling technique has been accomplished from the perspectives of suppliers in India in the domain of multivendor ATM Technology for the first time in ATM Banking as a contribution to the Literature.

3D BIM Modeling of Temporary Structure for Earthwork using Parametric Technique (파라메트릭 기술을 이용한 토공용 임시 구조물의 3D BIM 모델링)

  • Tanoli, Waqas Arshad;Raza, Hassnain;Lee, Seung-Soo;Park, Sang-Il;Seo, Jong-won
    • Journal of KIBIM
    • /
    • v.8 no.2
    • /
    • pp.1-9
    • /
    • 2018
  • Nowadays Building Information Modeling (BIM) is a significant source of sharing project information in the construction industry. This method of sharing the information enhances the project understanding among stakeholders. Modeling of information using BIM is becoming an essential part of many construction projects around the globe. Despite rapid adoption of BIM in construction industry still, some sectors of the industry like earthwork have not yet reaped its full benefits. BIM has brought a paradigm shift through identification and integration of the roles and responsibilities of project participants on a single platform. BIM is a 3D model-based process which provides the insight into the efficient project planning and design. The 3D modeling can also be used significantly for the design of temporary structures in an earthwork project. This paper presents the quantity take-off methodology and parametric modeling technique for creating the temporary structures using 3D BIM process. A case study is conducted to implement the proposed temporary structure family design on a real site project. The study presented is beneficial for the earthwork project stakeholders to extract the relevant information using 3D BIM models in a project. It provides an opportunity to calculate the quantity of material required for a project accurately.

Finite element modeling of a deteriorated R.C. slab bridge: lessons learned and recommendations

  • Ho, I-Kang;Shahrooz, Bahram M.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.3
    • /
    • pp.259-274
    • /
    • 1998
  • The test results from non-destructive and destructive field testing of a three-span deteriorated reinforced concrete slab bridge are used as a vehicle to examine the reliability of available tools for finite-element analysis of in-situ structures. Issues related to geometric modeling of members and connections, material models, and failure criteria are discussed. The results indicate that current material models and failure criteria are adequate, although lack of inelastic out-of-plane shear response in most nonlinear shell elements is a major shortcoming that needs to be resolved. With proper geometric modeling, it is possible to adequately correlate the measured global, regional, and local responses at all limit states. However, modeling of less understood mechanisms, such as slab-abutment connections, may need to be finalized through a system identification technique. In absence of the experimental data necessary for this purpose, upper and lower bounds of only global responses can be computed reliably. The studies reaffirm that success of finite-element models has to be assessed collectively with reference to all responses and not just a few global measurements.