• Title/Summary/Keyword: model.

Search Result 159,822, Processing Time 0.158 seconds

Prediction of Species Distribution Changes for Key Fish Species in Fishing Activity Protected Areas in Korea (국내 어업활동보호구역 주요 어종의 종분포 변화 예측)

  • Hyeong Ju Seok;Chang Hun Lee;Choul-Hee Hwang;Young Ryun Kim;Daesun Kim;Moon Suk Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.802-811
    • /
    • 2023
  • Marine spatial planning (MSP) is a crucial element for rational allocation and sustainable use of marine areas. Particularly, Fishing Activity Protected Areas constitute essential zones accounting for 45.6% designated for sustainable fishing activities. However, the current assessment of these zones does not adequately consider future demands and potential values, necessitating appropriate evaluation methods and predictive tools for long-term planning. In this study, we selected key fish species (Scomber japonicus, Trichiurus lepturus, Engraulis japonicus, and Larimichthys polyactis) within the Fishing Activity Protected Area to predict their distribution and compare it with the current designated zones for evaluating the ability of the prediction tool. Employing the Intergovernmental Panel on Climate Change (IPCC) 6th Assessment Report scenarios (SSP1-2.6 and SSP5-8.5), we used species distribution models (such as MaxEnt) to assess the movement and distribution changes of these species owing to future variations. The results indicated a 30-50% increase in the distribution area of S. japonicus, T. lepturus, and L. polyactis, whereas the distribution area of E. japonicus decreased by approximately 6-11%. Based on these results, a species richness map for the four key species was created. Within the marine spatial planning boundaries, the overlap between areas rated "high" in species richness and the Fishing Activity Protected Area was approximately 15%, increasing to 21% under the RCP 2.6 scenario and 34% under the RCP 8.5 scenario. These findings can serve as scientific evidence for future evaluations of use zones or changes in reserve areas. The current and predicted distributions of species owing to climate change can address the limitations of current use zone evaluations and contribute to the development of plans for sustainable and beneficial use of marine resources.

A Study on Database Design Model for Production System Record Management Module in DataSet Record Management (데이터세트 기록관리를 위한 생산시스템 기록관리 모듈의 DB 설계 모형연구)

  • Kim, Dongsu;Yim, Jinhee;Kang, Sung-hee
    • The Korean Journal of Archival Studies
    • /
    • no.78
    • /
    • pp.153-195
    • /
    • 2023
  • RDBMS is a widely used database system worldwide, and the term dataset refers to the vast amount of data produced in administrative information systems using RDBMS. Unlike business systems that mainly produce administrative documents, administrative information systems generate records centered around the unique tasks of organizations. These records differ from traditional approval documents and metadata, making it challenging to seamlessly transfer them to standard record management systems. With the 2022 revision of the 'Public Records Act Enforcement Decree,' dataset was included in the types of records for which only management authority is transferred. The core aspect of this revision is the need to manage the lifecycle of records within administrative information systems. However, there has been little exploration into how to manage dataset within administrative information systems. As a result, this research aims to design a database for a record management module that needs to be integrated into administrative information systems to manage the lifecycle of records. By modifying and supplementing ISO 16175-1:2020, we are designing an "human resource management system" and identifying and evaluating personnel management dataset. Through this, we aim to provide a concrete example of record management within administrative information systems. It's worth noting that the prototype system designed in this research has limitations in terms of data volume compared to systems currently in use within organizations, and it has not yet been validated by record researchers and IT developers in the field. However, this endeavor has allowed us to understand the nature of dataset and how they should be managed within administrative information systems. It has also affirmed the need for a record management module's database within administrative information systems. In the future, once a complete record management module is developed and standards are established by the National Archives, it is expected to become a necessary module for organizations to manage dataset effectively.

Sorghum Field Segmentation with U-Net from UAV RGB (무인기 기반 RGB 영상 활용 U-Net을 이용한 수수 재배지 분할)

  • Kisu Park;Chanseok Ryu ;Yeseong Kang;Eunri Kim;Jongchan Jeong;Jinki Park
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.521-535
    • /
    • 2023
  • When converting rice fields into fields,sorghum (sorghum bicolor L. Moench) has excellent moisture resistance, enabling stable production along with soybeans. Therefore, it is a crop that is expected to improve the self-sufficiency rate of domestic food crops and solve the rice supply-demand imbalance problem. However, there is a lack of fundamental statistics,such as cultivation fields required for estimating yields, due to the traditional survey method, which takes a long time even with a large manpower. In this study, U-Net was applied to RGB images based on unmanned aerial vehicle to confirm the possibility of non-destructive segmentation of sorghum cultivation fields. RGB images were acquired on July 28, August 13, and August 25, 2022. On each image acquisition date, datasets were divided into 6,000 training datasets and 1,000 validation datasets with a size of 512 × 512 images. Classification models were developed based on three classes consisting of Sorghum fields(sorghum), rice and soybean fields(others), and non-agricultural fields(background), and two classes consisting of sorghum and non-sorghum (others+background). The classification accuracy of sorghum cultivation fields was higher than 0.91 in the three class-based models at all acquisition dates, but learning confusion occurred in the other classes in the August dataset. In contrast, the two-class-based model showed an accuracy of 0.95 or better in all classes, with stable learning on the August dataset. As a result, two class-based models in August will be advantageous for calculating the cultivation fields of sorghum.

Evaluation of the Effects of Hangover-Releasing Agent Containing Vinegar Extract in Common Buckwheat and Tartary Buckwheat on Alcohol Metabolism and Hangover Improvement (일반메밀과 쓴메밀의 식초 추출물의 알코올 대사 및 숙취개선 효능 평가)

  • Su Jeong Kim;Hwang Bae Sohn;A Hyun Park;Jong Nam Lee;Su Hyoung Park;Jung Hwan Nam;Do Yeon Kim;Dong Chil Chang;Yul Ho Kim
    • Korean Journal of Plant Resources
    • /
    • v.36 no.5
    • /
    • pp.435-445
    • /
    • 2023
  • The aim of this study was to explore the effects of vinegar extract from seed of common buckwheat (Fagopyrum esculentum Moench) and seed of tartary buckwheat (F. tataricum Gaertner) on acute ethanol-induced hangover in Sprague-Dawley rats. Vinegar extract from buckwheat is rich choline, quercetin and its glycoside, rutin known as flavonoid antioxidants. The test extract containing buckwheat was proven to alleviate hangovers through a significant reduction in the concentration of alcohol and acetaldehyde in the context of an alcohol-induced hangover model. Hepatic alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) activities were significantly higher in buckwheat vinegar-treated rats than in ethanol-treated rats. Moreover, tartary buckwheat vinegar upregulated antioxidant enzyme such as superoxide dismutase and Catalase activities in liver tissues. These results suggest that buckwheat vinegar extract could alleviate ethanol-induced hangover symptoms by elevating activities related to hepatic ethanol-metabolizing enzymes against ethanol induced metabolites, and in particular, tartary buckwheat should be further developed to be a novel anti-hangover material.

Clustering and classification of residential noise sources in apartment buildings based on machine learning using spectral and temporal characteristics (주파수 및 시간 특성을 활용한 머신러닝 기반 공동주택 주거소음의 군집화 및 분류)

  • Jeong-hun Kim;Song-mi Lee;Su-hong Kim;Eun-sung Song;Jong-kwan Ryu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.603-616
    • /
    • 2023
  • In this study, machine learning-based clustering and classification of residential noise in apartment buildings was conducted using frequency and temporal characteristics. First, a residential noise source dataset was constructed . The residential noise source dataset was consisted of floor impact, airborne, plumbing and equipment noise, environmental, and construction noise. The clustering of residential noise was performed by K-Means clustering method. For frequency characteristics, Leq and Lmax values were derived for 1/1 and 1/3 octave band for each sound source. For temporal characteristics, Leq values were derived at every 6 ms through sound pressure level analysis for 5 s. The number of k in K-Means clustering method was determined through the silhouette coefficient and elbow method. The clustering of residential noise source by frequency characteristic resulted in three clusters for both Leq and Lmax analysis. Temporal characteristic clustered residential noise source into 9 clusters for Leq and 11 clusters for Lmax. Clustering by frequency characteristic clustered according to the proportion of low frequency band. Then, to utilize the clustering results, the residential noise source was classified using three kinds of machine learning. The results of the residential noise classification showed the highest accuracy and f1-score for data labeled with Leq values in 1/3 octave bands, and the highest accuracy and f1-score for classifying residential noise sources with an Artificial Neural Network (ANN) model using both frequency and temporal features, with 93 % accuracy and 92 % f1-score.

Analysis of Landslide Occurrence Characteristics Based on the Root Cohesion of Vegetation and Flow Direction of Surface Runoff: A Case Study of Landslides in Jecheon-si, Chungcheongbuk-do, South Korea (식생의 뿌리 점착력과 지표유출의 흐름 조건을 고려한 산사태의 발생 특성 분석: 충청북도 제천지역의 사례를 중심으로)

  • Jae-Uk Lee;Yong-Chan Cho;Sukwoo Kim;Minseok Kim;Hyun-Joo Oh
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.4
    • /
    • pp.426-441
    • /
    • 2023
  • This study investigated the predictive accuracy of a model of landslide displacement in Jecheon-si, where a great number of landslides were triggered by heavy rain on both natural (non-clear-cut) and clear-cut slopes during August 2020. This was accomplished by applying three flow direction methods (single flow direction, SFD; multiple flow direction, MFD; infinite flow direction, IFD) and the degree of root cohesion to an infinite slope stability equation. The application assumed that the soil saturation and any changes in root cohesion occurred following the timber harvest (clear-cutting). In the study area, 830 landslide locations were identified via landslide inventory mapping from satellite images and 25 cm resolution aerial photographs. The results of the landslide modeling comparison showed the accuracy of the models that considered changes in the root cohesion following clear-cutting to be improved by 1.3% to 2.6% when compared with those not considered in the area under the receiver operating characteristics (AUROC) analysis. Furthermore, the accuracy of the models that used the MFD algorithm improved by up to 1.3% when compared with the models that used the other algorithms in the AUROC analysis. These results suggest that the discriminatory application of the root cohesion, which considers changes in the vegetation condition, and the selection of the flow direction method may influence the accuracy of landslide predictive modeling. In the future, the results of this study should be verified by examining the root cohesion and its dynamic changes according to the tree species using the field hydrological monitoring technique.

An Analytical Study on the Seismic Behavior and Safety of Vertical Hydrogen Storage Vessels Under the Earthquakes (지진 시 수직형 수소 저장용기의 거동 특성 분석 및 안전성에 관한 해석적 연구)

  • Sang-Moon Lee;Young-Jun Bae;Woo-Young Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.152-161
    • /
    • 2023
  • In general, large-capacity hydrogen storage vessels, typically in the form of vertical cylindrical vessels, are constructed using steel materials. These vessels are anchored to foundation slabs that are specially designed to suit the environmental conditions. This anchoring method involves pre-installed anchors on top of the concrete foundation slab. However, it's important to note that such a design can result in concentrated stresses at the anchoring points when external forces, such as seismic events, are at play. This may lead to potential structural damage due to anchor and concrete damage. For this reason, in this study, it selected an vertical hydrogen storage vessel based on site observations and created a 3D finite element model. Artificial seismic motions made following the procedures specified in ICC-ES AC 156, as well as domestic recorded earthquakes with a magnitude greater than 5.0, were applied to analyze the structural behavior and performance of the target structures. Conducting experiments on a structure built to actual scale would be ideal, but due to practical constraints, it proved challenging to execute. Therefore, it opted for an analytical approach to assess the safety of the target structure. Regarding the structural response characteristics, the acceleration induced by seismic motion was observed to amplify by approximately ten times compared to the input seismic motions. Additionally, there was a tendency for a decrease in amplification as the response acceleration was transmitted to the point where the centre of gravity is located. For the vulnerable components, specifically the sub-system (support columns and anchorages), the stress levels were found to satisfy the allowable stress criteria. However, the concrete's tensile strength exhibited only about a 5% margin of safety compared to the allowable stress. This indicates the need for mitigation strategies in addressing these concerns. Based on the research findings presented in this paper, it is anticipated that predictable load information for the design of storage vessels required for future shaking table tests will be provided.

Estimating Optimal Timber Production for the Economic and Public Functions of the National Forests in South Korea (국유림의 경제적·공익적 기능을 고려한 적정 목재생산량 추정)

  • Yujin Jeong;Younghwan Kim;Yoonseong Chang;Dooahn Kwak;Gihyun Park;Dayoung Kim;Hyungsik Jeong;Hee Han
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.4
    • /
    • pp.561-573
    • /
    • 2023
  • National forests have an advantage over private forests in terms of higher investment in capital, technology, and labor, allowing for more intensive management. As such, national forests are expected to serve not only as a strategic reserve of forest resources to address the long-term demand for timber but also to stably perform various essential forest functions demanded by society. However, most forest stands in the current national forests belong to the fourth age class or above, indicating an imminent timber harvesting period amid an imbalanced age class structure. Therefore, if timber harvesting is not conducted based on systematic management planning, it will become difficult to ensure the continuity of the national forests' diverse functions. This study was conducted to determine the optimal volume of timber production in the national forests to improve the age-class structure while sustainably maintaining their economic and public functions. To achieve this, the study first identified areas within the national forests suitable for timber production. Subsequently, a forest management planning model was developed using multi-objective linear programming, taking into account both the national forests' economic role and their public benefits. The findings suggest that approximately 488,000 hectares within the national forests are suitable for timber production. By focusing on management of these areas, it is possible to not only improve the age-class distribution but also to sustainably uphold the forests' public benefits. Furthermore, the potential volume of timber production from the national forests for the next 100 years would be around 2 million m3 per year, constituting about 44% of the annual domestic timber supply.

Gap-Filling of Sentinel-2 NDVI Using Sentinel-1 Radar Vegetation Indices and AutoML (Sentinel-1 레이더 식생지수와 AutoML을 이용한 Sentinel-2 NDVI 결측화소 복원)

  • Youjeong Youn;Jonggu Kang;Seoyeon Kim;Yemin Jeong;Soyeon Choi;Yungyo Im;Youngmin Seo;Myoungsoo Won;Junghwa Chun;Kyungmin Kim;Keunchang Jang;Joongbin Lim;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1341-1352
    • /
    • 2023
  • The normalized difference vegetation index (NDVI) derived from satellite images is a crucial tool to monitor forests and agriculture for broad areas because the periodic acquisition of the data is ensured. However, optical sensor-based vegetation indices(VI) are not accessible in some areas covered by clouds. This paper presented a synthetic aperture radar (SAR) based approach to retrieval of the optical sensor-based NDVI using machine learning. SAR system can observe the land surface day and night in all weather conditions. Radar vegetation indices (RVI) from the Sentinel-1 vertical-vertical (VV) and vertical-horizontal (VH) polarizations, surface elevation, and air temperature are used as the input features for an automated machine learning (AutoML) model to conduct the gap-filling of the Sentinel-2 NDVI. The mean bias error (MAE) was 7.214E-05, and the correlation coefficient (CC) was 0.878, demonstrating the feasibility of the proposed method. This approach can be applied to gap-free nationwide NDVI construction using Sentinel-1 and Sentinel-2 images for environmental monitoring and resource management.

Development of Cloud Detection Method Considering Radiometric Characteristics of Satellite Imagery (위성영상의 방사적 특성을 고려한 구름 탐지 방법 개발)

  • Won-Woo Seo;Hongki Kang;Wansang Yoon;Pyung-Chae Lim;Sooahm Rhee;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1211-1224
    • /
    • 2023
  • Clouds cause many difficult problems in observing land surface phenomena using optical satellites, such as national land observation, disaster response, and change detection. In addition, the presence of clouds affects not only the image processing stage but also the final data quality, so it is necessary to identify and remove them. Therefore, in this study, we developed a new cloud detection technique that automatically performs a series of processes to search and extract the pixels closest to the spectral pattern of clouds in satellite images, select the optimal threshold, and produce a cloud mask based on the threshold. The cloud detection technique largely consists of three steps. In the first step, the process of converting the Digital Number (DN) unit image into top-of-atmosphere reflectance units was performed. In the second step, preprocessing such as Hue-Value-Saturation (HSV) transformation, triangle thresholding, and maximum likelihood classification was applied using the top of the atmosphere reflectance image, and the threshold for generating the initial cloud mask was determined for each image. In the third post-processing step, the noise included in the initial cloud mask created was removed and the cloud boundaries and interior were improved. As experimental data for cloud detection, CAS500-1 L2G images acquired in the Korean Peninsula from April to November, which show the diversity of spatial and seasonal distribution of clouds, were used. To verify the performance of the proposed method, the results generated by a simple thresholding method were compared. As a result of the experiment, compared to the existing method, the proposed method was able to detect clouds more accurately by considering the radiometric characteristics of each image through the preprocessing process. In addition, the results showed that the influence of bright objects (panel roofs, concrete roads, sand, etc.) other than cloud objects was minimized. The proposed method showed more than 30% improved results(F1-score) compared to the existing method but showed limitations in certain images containing snow.