• Title/Summary/Keyword: model-order reduction

Search Result 1,089, Processing Time 0.026 seconds

The Numerical Modeling Study for the Simultaneous Flow of Leachate and LFG in Kimpo Landfill (수도권 매립지에서 침출수-가스의 동시 유동 해석을 위한 전산 모델링 연구)

  • 성원모;박용찬;이광희
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.2
    • /
    • pp.101-106
    • /
    • 1999
  • Open dump of refuse causes groundwater and soil contamination by leachate and air pollution by LFG(Landfill Gas). In this paper, in order to perform a study about reduction of high leachate and LFG collection & control, using a 3-D, 2-phase, transient FDM model, the analysis of simultaneous flow of leachate and LFG has been carried out. In present numerical analysis it is assumed that 58 percents of LFG will evaporate to the ambient air and the recharge rate of a landfill be 12 percent of the average precipitation per year. All other data were excerpted at the point of 1995 when three refuse layers had been buried. From numerical analysis we concluded that maximum head value is approximately 26 mH2O<-에이치투오 (2.52 atm) in the center of the system and that installing venting trench plays an important role in landfill stabilization. Evan with the assumption of three layers constructed and low recharge rate applied, it is found that cumulative leachate and LFG productions will be 15.1 million 세제곱미터, 5.58 billion 세제곱미터, respectively after 40 years.

  • PDF

Analysis of an HTS coil for large scale superconducting magnetic energy storage

  • Lee, Ji-Young;Lee, Seyeon;Choi, Kyeongdal;Park, Sang Ho;Hong, Gye-Won;Kim, Sung Soo;Lee, Ji-Kwang;Kim, Woo-Seok
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.2
    • /
    • pp.45-49
    • /
    • 2015
  • It has been well known that a toroid is the inevitable shape for a high temperature superconducting (HTS) coil as a component of a large scale superconducting magnetic energy storage system (SMES) because it is the best option to minimize a magnetic field intensity applied perpendicularly to the HTS wires. Even though a perfect toroid coil does not have a perpendicular magnetic field, for a practical toroid coil composed of many HTS pancake coils, some type of perpendicular magnetic field cannot be avoided, which is a major cause of degradation of the HTS wires. In order to suggest an optimum design solution for an HTS SMES system, we need an accurate, fast, and effective calculation for the magnetic field, mechanical stresses, and stored energy. As a calculation method for these criteria, a numerical calculation such as an finite element method (FEM) has usually been adopted. However, a 3-dimensional FEM can involve complicated calculation and can be relatively time consuming, which leads to very inefficient iterations for an optimal design process. In this paper, we suggested an intuitive and effective way to determine the maximum magnetic field intensity in the HTS coil by using an analytic and statistical calculation method. We were able to achieve a remarkable reduction of the calculation time by using this method. The calculation results using this method for sample model coils were compared with those obtained by conventional numerical method to verify the accuracy and availability of this proposed method. After the successful substitution of this calculation method for the proposed design program, a similar method of determining the maximum mechanical stress in the HTS coil will also be studied as a future work.

Effects of future climate conditions on photosynthesis and biochemical component of Ulva pertusa (Chlorophyta)

  • Kang, Eun Ju;Kim, Kwang Young
    • ALGAE
    • /
    • v.31 no.1
    • /
    • pp.49-59
    • /
    • 2016
  • Ulva pertusa, a common bloom-forming green alga, was used as a model system to examine the effects of elevated carbon dioxide (CO2) and temperature on growth and photosynthetic performance. To do this, U. pertusa was grown under four temperature and CO2 conditions; ambient CO2 (400 μatm) and temperature (16℃) (i.e., present), elevated temperature only (19℃) (ET; i.e., warming), elevated CO2 only (1,000 μatm) (EC; i.e., acidification), and elevated temperature and CO2 (ET and EC; i.e., greenhouse), and its steady state photosynthetic performance evaluated. Maximum gross photosynthetic rates (GPmax) were highest under EC conditions and lowest under ET conditions. Further, ET conditions resulted in decreased rate of dark respiration (Rd), but growth of U. pertusa was higher under ET conditions than under ambient temperature conditions. In order to evaluate external carbonic anhydrase (eCA) activity, photosynthesis was measured at 70 μmol photons m−2 s−1 in the presence or absence of the eCA inhibitor acetazolamide (AZ), which inhibited photosynthetic rates in all treatments, indicating eCA activity. However, while AZ reduced U. pertusa photosynthesis in all treatments, this reduction was lower under ambient CO2 conditions (both present and warming) compared to EC conditions (both acidification and greenhouse). Moreover, Chlorophyll a and glucose contents in U. pertusa tissues declined under ET conditions (both warming and greenhouse) in conjunction with reduced GPmax and Rd. Overall, our results indicate that the interaction of EC and ET would offset each other’s impacts on photosynthesis and biochemical composition as related to carbon balance of U. pertusa.

Study of Pressure and Flux Pulsation to Design Optimum Valve-Plate Notch and Pulsation-Variables Analysis of Swash-Plate-Type Piston Pump (가변 사판식 피스톤펌프의 맥동 변수 분석 및 최적 밸브플레이트 노치 설계를 위한 압력 및 유량맥동에 관한 연구)

  • Bae, Jun-Hyeong;Chung, Won-Jee;Jang, Jun-Ho;Yoon, Young-Hwan;Jeon, Ju-Yeol
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.244-250
    • /
    • 2015
  • We propose a simulation technique to estimate the reduction effect of the pressure/flow pulsation by analysis of the pulsation variables and notch shape of the valve plate of a swash-plate-type variable piston pump. First, using SimulationX$^{(R)}$, we perform a theoretical kinematic analysis according to the variable swash-plate angle and rotational velocity in order to design a single-piston pump. In designing the notch shape of the valve plate of the swash-plate-type variable piston pump as one of the pulsation variables, we investigate the effect of the pulsation by comparing two notch types (circular type and V type). Then, we extend our analysis to a nine-piston pump model. This paper not only confirms the effect of the pressure/flow pulsation according to pulsation variables but can also be applied to the development of a SimulationX$^{(R)}$-based simulation technique for notch-shape optimization for a swash-plate-type variable piston pump.

$H^{\infty}$ Controller Design for RTP System using Weighted Mixed Sensitivity Minimization (하중 혼합감도함수를 이용한 RTP 시스템의 $H^{\infty}$ 제어기 설계)

  • Lee, Sang-Kyung;Kim, Jong-Hae;Oh, Do-Chang;Park, Hong-Bae
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.6
    • /
    • pp.55-65
    • /
    • 1998
  • In industrial fields, RTP(rapid thermal processing) system is widely used for improving the oxidation and the annealing in semiconductor manufacturing process. The main control factors are temperature control of wafer and uniformity in the wafer. In this paper, we propose an $H^{\infty}$ controller design of RTP system satisfying robust stability and performance using weighted mixed sensitivity miniimization and loop shaping technique. And we need reduction technique because of the difficulty of implementation with the obtained high order controller for original model and reduced models, namely, Hankel, square-root balanced, and Schur balanced methods. An example is proposed to show the validity of the proposed method.

  • PDF

A Case Study on the Reduction of Noise and Vibration at the Backpass Heat Surface in the Power Plant Boiler (발전용 보일러 후부 전열면 소음진동 저감에 관한 연구)

  • Lee, Gyong-Soon;Lee, Tae-Gu;Moon, Seung-Jae;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.4 no.3
    • /
    • pp.54-59
    • /
    • 2008
  • The resonance of boiler is caused by exciting force in the gas path and it generates the vibration by the harmony of boiler's dimensional factor. According to trending toward the boiler of increasing capacity and a bigger size, it has a problem of the vibration at back-pass heating surfaces. We can predict such vibrations as comparison between vortex frequency and gas column's natural frequency. We can't rely on the method for the past decades because of changing parameters, such as an allowable error, gas temperature, gas velocity, Strouhal number. We can reduce the vibration to use the seasoning effect and change the operating condition in coal fired boiler but it's not essential solution. When the vibration occurred in the model boiler, we must measures the acoustic pressure and frequency of places for considering the means. So far, we confirmed the problem from field measures and theoretical analysis about the acoustic vibration of boiler. We installed anti-acoustic baffle in a existing boiler to change the acoustic natural frequency at the cavity, which results in reducing the acoustic vibration. The first, we prove that the acoustic resonance is caused by harmonizing vortex shedding frequency of tube heat surface with acoustic natural frequency of cavity in the range of 650~750 MW loads. The second, the acoustic resonance at the back-pass heating surface has the third order of acoustic natural frequency at the second economizer. We install five anti-acoustic baffles at the second economizer to reducing the resonance. We confirm considerably reducing the acoustic vibration of boiler during the commercial boiler.

  • PDF

A Study on Noise Reduction of a DC Motor (DC 모터 소음 저감에 관한 연구)

  • 정일호;양홍익;박태원;김주용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.764-769
    • /
    • 2004
  • The DC Motor in a vehicle may cause noise and vibration because of high speed revolution, which can make a driver feel uncomfortable. There have been various studies attempting to solve these problems, focusing mostly on the causes of and ways to reduce noise and vibration. It is suggested that the noise in a DC Motor may be primarily due to interaction between a brush and a commutator. Brush noise, the most common noise in a DC Motor, results from a brush bounced from the surface of the commutator, fluctuation of the friction between the brush and the commutator, and the impact on the brush when passing over slots of the commutator. Based on the noise test, one of the most important design parameters was shown to be the roundness of the commutator. As the DC motor is used, the roundness of the commutator gets bigger with subsequent increase of the level of brush noise and vibration. There must be a threshold in order to prevent the brush noise from getting worse. Using the method of CAE is more efficient than the real test for purposes of looking for various design parameters to maintain the roundness of the commutator. In this study, the design process to reduce the brush noise is presented with the use of a computer model. The design parameters to reduce the brush noise and vibration are proposed by using FEM. The design parameters are used to reduce the noise and vibration of a DC motor and it is verified with the test results on a fan DC motor in a vehicle. This method may be applicable to various DC motors.

  • PDF

Trends and Causes of Poverty among Urban Wage Earners' Households (도시 근로자 가구의 빈곤 추이(推移)와 원인에 관한 연구: 조세와 이전소득의 빈곤완화효과를 포함하여)

  • Kim, Kyo-Seong
    • Korean Journal of Social Welfare
    • /
    • v.59 no.2
    • /
    • pp.143-169
    • /
    • 2007
  • The major purpose of this study was to offer a comprehensive analysis of the changing trends and causes of poverty among urban wage earners' households from 1995 to 2005. In order to do that, this study used the micro data of "Income and Expenditure Survey of Urban Households" by the National Statistical Office(NSO) and GEE(Generalized estimating equation) regression model which is know as an appropriate method for the longitudinal and clustering data. The results show that (1) the numbers of poverty rate and poverty gap in recent years are even getting seriously worse than those in the IMF crisis. (2) Main characteristics of poor are female headed, old aged, low educated households, and having atypical working position. (3) Major determinants of poverty are also related to the variables as mentioned the above. (4) However, poverty reduction effect of public transfer increased preferably in recent years.

  • PDF

Analysis of Debris Flow Disaster Area according to Location Change of Check Dam using Kanako-2D (Kanako-2D를 이용한 사방댐 위치 변화에 따른 토석류 피해지 분석)

  • Kim, Young Hwan;Jun, Kye-Won
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.1
    • /
    • pp.128-134
    • /
    • 2018
  • With the increase in frequency of typhoons and heavy rains following the climate change, the scale of damage from the calamities in the mountainous areas has been growing larger and larger, which is different from the past. For the case of Korea where 64% of land is consisted of the mountainous areas, establishment of the check dams has been drastically increased after 2000 in order to reduce the damages from the debris flow. However, due to the lack of data on scale, location and kind of check dams established for reducing the damages in debris flow, the measures to prevent damages based on experience and subjective basis have to be relied on. Under this study, the high-precision DEM data was structured by using the terrestrial LiDAR in the Jecheon area where the debris flow damage occurred in July 2009. And, from the numerical models of the debris flow, Kanako-2D that is available to reflect the erosion and deposition action was applied to install the erosion control facilities (water channel, check dam) and analyzed the effect of reducing the debris flow shown in the downstream.After installing the erosion control facilities, most of debris flow moves along the water channel to reduce the area to expand the debris flow, and after installing the check dam, the flow depth and flux of the debris flow were reduced along with the erosion. However, as a result of analyzing the diffusion area, flow depth, erosion and deposition volume of the debris flow generated from the deposition part after modifying the location of the check dams with the damages occurring on private residences and agricultural land located on the upstream area, the highest reduction effect was shown when the check dam is installed in the maximal discharge points.

Prediction models of compressive strength and UPV of recycled material cement mortar

  • Wang, Chien-Chih;Wang, Her-Yung;Chang, Shu-Chuan
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.419-427
    • /
    • 2017
  • With the rising global environmental awareness on energy saving and carbon reduction, as well as the environmental transition and natural disasters resulted from the greenhouse effect, waste resources should be efficiently used to save environmental space and achieve environmental protection principle of "sustainable development and recycling". This study used recycled cement mortar and adopted the volumetric method for experimental design, which replaced cement (0%, 10%, 20%, 30%) with recycled materials (fly ash, slag, glass powder) to test compressive strength and ultrasonic pulse velocity (UPV). The hyperbolic function for nonlinear multivariate regression analysis was used to build prediction models, in order to study the effect of different recycled material addition levels (the function of $R_m$(F, S, G) was used and be a representative of the content of recycled materials, such as fly ash, slag and glass) on the compressive strength and UPV of cement mortar. The calculated results are in accordance with laboratory-measured data, which are the mortar compressive strength and UPV of various mix proportions. From the comparison between the prediction analysis values and test results, the coefficient of determination $R^2$ and MAPE (mean absolute percentage error) value of compressive strength are 0.970-0.988 and 5.57-8.84%, respectively. Furthermore, the $R^2$ and MAPE values for UPV are 0.960-0.987 and 1.52-1.74%, respectively. All of the $R^2$ and MAPE values are closely to 1.0 and less than 10%, respectively. Thus, the prediction models established in this study have excellent predictive ability of compressive strength and UPV for recycled materials applied in cement mortar.