• Title/Summary/Keyword: model-driven

Search Result 1,981, Processing Time 0.03 seconds

A Study on the Effects of Entrepreneurship and Innovation Activities of Venture Enterprises on the Increase Firms' Revenue (벤처기업의 기업가정신과 혁신활동이 기업 매출 신장에 미치는 영향에 관한 연구)

  • kim, In-Sue;Yoo, Kyeong-Sik;Kim, Yoon-Dong
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.12
    • /
    • pp.329-341
    • /
    • 2017
  • In order to analyze how the entrepreneurship affects the commercialization performance in relation to R&D input factors, technological innovation and technology in the course of technology commercialization process. Korean manufacturing venture companies has been surveyed. The structural equation model showed technology commercialization mechanism driven by entrepreneurship. Innovativeness is one of the most important factors in the success of venture firms. Technology commercialization was dependent on innovation rather than the input of research and development resources. Technological innovation shows mediating effects in the influence of entrepreneurship on commercialization performance, but technology capability has relatively small effect. Commercialization process of new product development and product improvement was different. The government needs to actively support R&D strategies and commercialization infrastructure in order to promote innovation, assist R&D workforce and enhance product commercialization in venture companies.

Review on the Recent PM2.5 Studies in China (최근 중국의 초미세먼지 오염 연구 동향)

  • Kim, Yumi;Kim, Jin Young;Lee, Seung-Bok;Moon, Kil-Choo;Bae, Gwi-Nam
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.5
    • /
    • pp.411-429
    • /
    • 2015
  • The Korea Ministry of Environment has established an air quality standard for $PM_{2.5}$ in 2012 and it is effective from January 2015. In this study, we review various aspects of $PM_{2.5}$ in China, including its measurement, modeling, source apportionment, and health effect, and suggest future research directions for $PM_{2.5}$ studies in Korea. Measurements studies for $PM_{2.5}$ have examined organic marker compounds and $^{14}C$ as well as inorganic aerosols for distinguishing sources. Modeling results supported that the control of $PM_{2.5}$ pollution in big city needs effective cooperation between city and its surrounding regions. The major $PM_{2.5}$ sources in China have been identified to be secondary sulfur, motor vehicle emissions, coal combustion, dust, biomass burning, and industrial sources, however, they have seasonal dependency. Especially, the severe haze pollution event during January 2013 over eastern and northern China was driven to a large extent by secondary aerosol formation. Short-term exposure to $PM_{2.5}$ is strongly associated with the increased risk of morbidity and mortality from cardiovascular and respiratory diseases, as well as total non-accidental mortality. Considered previous $PM_{2.5}$ studies in China, analysis of specific organic species using online measurement, chamber experiment for secondary aerosol formation mechanism, and development of parameterizing this process in the model are needed to elucidate factors governing the abundance and composition of $PM_{2.5}$ in Korea.

Estimation Modelling of Energy Consumption and Anti-greening Impacts in Large-Scale Wired Access Networks (대규모 유선 액세스 네트워크 환경에서 에너지 소모량과 안티그리닝 영향도 추정 모델링 기법)

  • Suh, Yuhwa;Kim, Kiyoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.8
    • /
    • pp.928-941
    • /
    • 2016
  • Energy consumption of today's wired data networks is driven by access networks. Today, green networking has become a issue to reduce energy wastes and $CO_2$ emission by adding energy managing mechanism to wired data networks. However, energy consumption and environmental impacts of wired access networks are largely unknown. In addition, there is a lack of general and quantitative valuation basis of energy use of large-scale access networks and $CO_2$ emissions from them. This paper compared and analyzed limits of existing models estimating energy consumption of access networks and it proposed a model to estimate energy consumption of large-scale access networks by top-down approach. In addition, this work presented models that assess environmental(anti-greening) impacts of access networks using results from our models. The performance evaluation of the proposed models are achieved by comparing with previous models based on existing investigated materials and actual measured values in accordance with real cases.

The Industrial Economic Costs of Unsupplied Electricity in OECD Countries using Input-Output Analysis (산업연관분석을 활용한 전력의 산업별 공급지장비용 평가 : OECD 국가를 중심으로)

  • Lee, Seung-Jae;Jeong, Dong-Won;Yu, Jae-Gab
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.4
    • /
    • pp.191-198
    • /
    • 2016
  • As the electricity produced from the electricity industry, a national key industry in Korea, are supplied to other industries as an intermediate goods, the supply shortage of electricity industry has a large impact on the national economy. This paper attempts to analyze the supply shortage effects which are defined as the negative impact of one won of supply failure in the electricity on the production of other industries. To this end, an input-output analysis using an input-output (I-O) table describing inter-industry flow of intermediate goods is applied. More concretely, the supply-driven model is applied subject to the OECD countries. The value of the supply effects interfere with Denmark's best large 1.682 was followed by South Korea, Japan, Australia, the UK.

MAGNETIC FIELD IN THE LOCAL UNIVERSE AND THE PROPAGATION OF UHECRS

  • DOLAG KLAUS;GRASSO DARIO;SPRINGEL VOLKER;TKACHEV IGOR
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.427-431
    • /
    • 2004
  • We use simulations of large-scale structure formation to study the build-up of magnetic fields (MFs) in the intergalactic medium. Our basic assumption is that cosmological MFs grow in a magnetohy-drodynamical (MHD) amplification process driven by structure formation out of a magnetic seed field present at high redshift. This approach is motivated by previous simulations of the MFs in galaxy clusters which, under the same hypothesis that we adopt here, succeeded in reproducing Faraday rotation measurements (RMs) in clusters of galaxies. Our ACDM initial conditions for the dark matter density fluctuations have been statistically constrained by the observed large-scale density field within a sphere of 110 Mpc around the Milky Way, based on the IRAS 1.2-Jy all-sky redshift survey. As a result, the positions and masses of prominent galaxy clusters in our simulation coincide closely with their real counterparts in the Local Universe. We find excellent agreement between RMs of our simulated galaxy clusters and observational data. The improved numerical resolution of our simulations compared to previous work also allows us to study the MF in large-scale filaments, sheets and voids. By tracing the propagation of ultra high energy (UHE) protons in the simulated MF we construct full-sky maps of expected deflection angles of protons with arrival energies $E = 10^{20}\;eV$ and $4 {\times} 10^{19}\;eV$, respectively. Accounting only for the structures within 110 Mpc, we find that strong deflections are only produced if UHE protons cross galaxy clusters. The total area on the sky covered by these structures is however very small. Over still larger distances, multiple crossings of sheets and filaments may give rise to noticeable deflections over a significant fraction of the sky; the exact amount and angular distribution depends on the model adopted for the magnetic seed field. Based on our results we argue that over a large fraction of the sky the deflections are likely to remain smaller than the present experimental angular sensitivity. Therefore, we conclude that forthcoming air shower experiments should be able to locate sources of UHE protons and shed more light on the nature of cosmological MFs.

Basic Insulation Characteristics of Conduction-Cooled HTS SMES System (전도냉각 고온초전도 SMES 시스템의 기초절연 특성)

  • Choi Jae-Hyeong;Kwang Dong-Soon;Cheon Hyeon-Gweon;Kim Sang-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.8
    • /
    • pp.404-410
    • /
    • 2006
  • Toward the practical applications, on operation of conduction-cooled HTS SMES at temperatures well below 40[K] should be investigated, in order to take advantage of a greater critical current density of HTS and considerably reduce the size and weight of the system. In order to take advantage of a greater critical current density of high temperature superconducting (HTS) and considerably reduce the size and weight of the system, conduction-cooled HTS superconducting magnetic energy storage (SMES) at temperatures well below 40[K] should be investigated. This work focuses on the breakdown and flashover phenomenology of dielectrics exposed in air and/or vacuum for temperatures ranging from room temperature to cryogenic temperature. Firstly, we summarize the insulation factors of the magnet for the conduction cooled HTS SMES. And Secondly a surface flashover as well as volume breakdown in air and/or vacuum with two kind insulators has been investigated. Finally, we will discuss applications for the HTS SMES including aging studies on model coils exposed in vacuum at cryogenic temperature. The commercial application of many conduction-cooled HTS magnets, however, requires refrigeration at temperatures below 40[K], in order to take advantage of a greater critical current density of HTS and reduce considerably the size and weight of the system. The magnet is driven in vacuum condition. The need to reduce the size and weight of the system has led to the consideration of the vacuum as insulating media. We are studying on the insulation factors of the magnet for HTS SMES. And we experiment the spacer configure effect in the dielectric flashover characteristics. From the results, we confirm that our research established basic information in the insulation design of the magnet.

Full digital control of permanent magnet AC servo motors

  • Lee, Jin-Won;Kim, Dong-Il;Jin, Sang-Hyun;Oh, In-Hwan;Kim, Sungkwun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.218-223
    • /
    • 1993
  • In this paper, we present a full digital control scheme which controls currents and speed of the permanent magnet AC servo motor with large range of bandwidth and high performance. The current equations of the permanent magnet AC servo motor are linearized by feedback linearization technique. Both acceleration feedforward terms and IP controllers, whose gains are functions of motor speed, are used in order to control motor currents. In addition the phase delays in current control loops are compensated by placing phase lead-lag compensators after current commands, which make it possible to avoid high gains in the current controllers. Unity power factor can be achieved by the proposed current controller. Pulsewidth modulation is performed by way of the well-known comparison with a triangular carrier signals. The velocity controller is designed on the basis of the linearized model of the permanent magnet AC servo motor by the proposed current controller. The performance of the entire control system is analyzed in the presence of uncertainty in the motor parameters. The proposed control scheme is implemented using the digital signal processor-based controller composed of an Analog Device ADSP 2111 and a NEC78310. The pulsewidth modulation (PWM) signals are generated through a custom IC, SAMSUNG-PWM1, which has the outputs of current controllers as input. The experimental results show that the permanent magnet AC servo motor can be always driven with high dynamic performance by the proposed full digital control scheme of motor speed and motor current.

  • PDF

Characteristics of Behavior of Brain Board - driven Clay Layers by Vacuum Loading (진공하중에 의한 Drain Board 타입 점토지반의 거동 특성)

  • Lee, Song;Yang, Tae-Seon;Park, Jong-Chan;Paik, Young-Shik
    • Geotechnical Engineering
    • /
    • v.9 no.1
    • /
    • pp.45-58
    • /
    • 1993
  • Paper drain method is one of the methods used for the improvement of soft clay as hydraulic fill sites or the seaside industrial complex. This method adopts a card board as the drain materials instead of sand piles in sand drain method. In this paper 3 types of drain board are used to fond out the characteristics of consolidation by vacuum consolidation model test. So does the no drain board test. This test causes the reduction of pore water pressure to promote the settlement without change of ground water level. Conclusively, the vacuum consolidation shows 3-dimensional behaviors and pore water pressure reaches a negative value in a short time. In addition, it is expected to have a comparatively good consolidation effect using non -woven board, and vacuum loading results in increasing the shear strength at the bottom and top of call layers.

  • PDF

Estimation of Bearing Capacity for Open-ended Pile in Sands Considering Soil Plugging (II) - Applicability of New Design Equation - (사질토지반에서 폐색효과를 고려한 개단말뚝의 지지력 산정 (II) - 새로운 지지력 산정식의 적용성 -)

  • 백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.199-206
    • /
    • 2002
  • The bearing capacity of open-ended piles is affected by the degree of soil plugging, which is quantified by the incremental filling ratio, IFR. However, most design criteria for open-ended piles do not consider the variation of pile bearing capacity with IFR. In this study, new design equations for calculating the pile base and shaft load capacities, based on IFR value of the pile, were proposed using the results of model pile tests. A full-scale pile load test was also conducted on fully instrumented open-ended pile driven into gravelly sand. The IFR for the pile was continuously measured during pile driving. In order to check the accuracy of predictions made with the proposed equations, the equations were applied to two examples, including the pile load test preformed in this study. Based on the comparisons with the pile load tests results, the proposed equations appear to produce satisfactory predictions.

A Feasibility Study on the Mixed Refrigerant Composition in the Rankine Cycle Empowered by Cold Energy (냉열을 이용한 랭킨 사이클 방식의 발전시스템에서 혼합냉매유체 조성비의 적용한계 분석)

  • Jeong, Moon;Cho, Eunbi;Hwang, Inju;Kang, Choonhyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.3
    • /
    • pp.14-18
    • /
    • 2016
  • The power generation system using cold energy, which evolves in a large amount during the vaporization process of the liquefied natural gas, was designed in favor of the Rankine cycle with a mixed refrigerant as the working fluid. In this study it is intended to identify the allowable limits of the working fluid composition in respect of equipment safety in the Rankine cycle-type power generation system driven by the cold energy. The thermodynamic properties of the working fluid, which is a hydrocarbon mixture, were calculated with the Peng-Robinson model. In the steady state simulation of the power generation system by using a commercial tool Aspen HYSYS, the feed conditions of LNG Test Bed Train No.1 along with some necessary assumptions were incorporated. The results indicated that deterioration of the mechanical performance of the equipment as well as its safety would be brought about if contents of $C_2H_6$ and $C_3H_8$ in the mixture become, respectively, too high or too low.