• Title/Summary/Keyword: model-based software testing

Search Result 240, Processing Time 0.03 seconds

An Estimating Method for Software Testing Manpower (소프트웨어 시험 인력의 추정 방법)

  • Park Ju-Seok
    • The KIPS Transactions:PartD
    • /
    • v.11D no.7 s.96
    • /
    • pp.1491-1498
    • /
    • 2004
  • Successful project planning relics on a good estimation of the manpower required to complete a project, together with the schedule options that may be available. Despite the extensive research done developing new and better models, existing software manpower estimation models are present only the total manpower or instantaneous manpower distribution according to the testing time for the software life-cycle. This paper suggests the manpower estimating models for software testing phase as well as testing process and debugging process in accordance with de-tected faults. This paper presents the polynomial model for effort based on testing and debugging faults. These models are verified by 5 different software project data sets with coefficient of determination and mean magnitude of relative error for adaptability of model.

Research on the Effects of MAAB Style Guidelines for Weapon System Embedded Software Reliability Improvement (무기체계 내장형 소프트웨어 신뢰성 향상을 위한 MAAB 스타일 가이드라인 영향성 연구)

  • Kim, Yeon-Gyun;Yoon, Hyung-Sik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.213-222
    • /
    • 2014
  • In this paper, we introduce that MAAB style guideline has effects on the codes generated from Simulink models for static and dynamic software testing, when weapon system embedded software design and implementation are performed using the model based method. As showing the effects, MAAB guideline is helpful for defect prevention related with coding rules and run time errors associated with the DAPA weapon system embedded software guide. Thus, we check related items between MAAB and DAPA software reliability testing including static and dynamic analysis. And then we propose the criterion to select proper items from MAAB for DAPA guideline and show how to verify the relationship and the effects on reliability of models in Simulink. In addition, we show the needs for clear logics in conditional block models or statements and simple complexity models for Simulink model based design.

A software reliability model with a Burr Type III fault detection rate function

  • Song, Kwang Yoon;Chang, In Hong;Choi, Min Su
    • International Journal of Reliability and Applications
    • /
    • v.17 no.2
    • /
    • pp.149-158
    • /
    • 2016
  • We are enjoying a very comfortable life thanks to modern civilization, however, comfort is not guaranteed to us. Development of software system is a difficult and complex process. Therefore, the main focus of software development is on improving the reliability and stability of a software system. We have become aware of the importance of developing software reliability models and have begun to develop software reliability models. NHPP software reliability models have been developed through the fault intensity rate function and the mean value functions within a controlled testing environment to estimate reliability metrics such as the number of residual faults, failure rate, and reliability of the software. In this paper, we present a new NHPP software reliability model with Burr Type III fault detection rate, and present the goodness-of-fit of the fault detection rate software reliability model and other NHPP models based on two datasets of software testing data. The results show that the proposed model fits significantly better than other NHPP software reliability models.

A Coverage-Based Software Reliability Growth Model for Imperfect Fault Detection and Repeated Construct Execution (불완전 결함 발견과 구문 반복 실행을 고려한 커버리지 기반 신뢰성 성장 모형)

  • Park, Joong-Yang;Park, Jae-Heung;Kim, Young-Soon
    • The KIPS Transactions:PartD
    • /
    • v.11D no.6
    • /
    • pp.1287-1294
    • /
    • 2004
  • Recently relationships between reliability measures and the coverage have been developed for evaluation of software reliability. Particularly the mean value function of the coverage-based software reliability growth model is important because of its key role in rep-resenting the software reliability growth. In this paper, we first review the problems of the existing mean value functions with respect to the assumptions on which they are based. Then a new mean value function is proposed. The new mean value function is developed for a general testing environment in which imperfect fault detection and repeated construct execution are allowed. Finally performance of the proposed model is empirically evaluated by applying it to a real data set.

Software Reliability Model for the Stopping Rule (시험 중단 시점에 관한 소프트웨어 신뢰도 모델)

  • Moon, Sug-Kyung
    • Journal of Korean Society for Quality Management
    • /
    • v.22 no.2
    • /
    • pp.33-40
    • /
    • 1994
  • Most software reliability models and other methods attempt to estimate some measures based on its fault history. There are several phases of the software life cycle including testing phase. We can propose it's stopping rule to decide when to stop the testing and pass it on to the next phase by considering the detailed structure of software and calculating the failure rate when each fault was detected. Downs (1985) proposed a method which was developed for estimating the failure rate applicable only to two-level profiles. In this paper, I extended to profiles involving more levels.

  • PDF

Towards Enacting a SPEM-based Test Process with Maturity Levels

  • Dashbalbar, Amarmend;Song, Sang-Min;Lee, Jung-Won;Lee, Byungjeong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.1217-1233
    • /
    • 2017
  • Effective monitoring and testing during each step are essential for document verification in research and development (R&D) projects. In software development, proper testing is required to verify it carefully and constantly because of the invisibility features of software. However, not enough studies on test processes for R&D projects have been done. Thus, in this paper, we introduce a Test Maturity Model integration (TMMi)-based software field R&D test process that offers five integrity levels and makes the process compatible for different types of projects. The Software & Systems Process Engineering Metamodel (SPEM) is used widely in the software process-modeling context, but it lacks built-in enactment capabilities, so there is no tool or process engine that enables one to execute the process models described in SPEM. Business Process Model and Notation (BPMN)-based workflow engines can be a solution for process execution, but process models described in SPEM need to be converted to BPMN models. Thus, we propose an approach to support enactment of SPEM-based process models by converting them into business processes. We show the effectiveness of our approach through converting software R&D test processes specified in SPEM in a case study.

Proposal : Improvement of Testing Frontier Capability Assessment Model through Comparing International Standards in Software Product and Software Testing Process Perspective (소프트웨어 제품과 프로세스 관점에서 국제표준과 비교를 통한 테스팅 프론티어 역량평가 모델 개선 방안)

  • Yoon, Hyung-Jin;Choi, Jin-Young
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.2
    • /
    • pp.115-120
    • /
    • 2015
  • The Testing Frontier Capability Assessment Model (TCAM) is based on ISO/IEC 9126, TMMi and TPI. Since ISO/IEC 9126, TMMi and TPI were made over 10 years ago, TCAM faces the problem that it can not assess and analyze the capability of small businesses that employ new software development methods or processes, for example Agile, TDD(Test Driven Development), App software, and Web Software. In this paper, a method to improve the problem is proposed. The paper is composed of the following sections: 1) ISO/IEC 9126, ISO/IEC 25010 and ISO/IEC/IEEE 29119 part 2 review 2) TCAM review 3) software product quality perspective comparison, and analysis between ISO/IEC 9126, ISO/IEC 25010 and TCAM 4) comparison, and analysis between ISO/IEC/IEEE 29119 part2 and TCAM and 5) proposal for the improvement of TCAM.

The Comparative Study for the Property of Learning Effect based on Delay ed Software S-Shaped Reliability Model (지연된 소프트웨어 S-형태 신뢰성모형에 의존된 학습효과 특성에 관한 비교 연구)

  • Kim, Hee-Cheul;Shin, Hyun-Cheul
    • Convergence Security Journal
    • /
    • v.11 no.6
    • /
    • pp.73-80
    • /
    • 2011
  • In this study, software products developed in the course of testing, software managers in the process of testing software and tools for effective learning effects perspective has been studied using the NHPP software. The delayed software S-shaped reliability model applied to distribution was based on finite failure NHPP. Software error detection techniques known in advance, but influencing factors for considering the errors found automatically and learning factors, by prior experience, to find precisely the error factor setting up the testing manager are presented comparing the problem. As a result, the learning factor is greater than automatic error that is generally efficient model could be confirmed. This paper, numerical example of applying using time between failures and parameter estimation using maximum likelihood estimation method, after the efficiency of the data through trend analysis model selection were efficient using the mean square error and $R^2$(coefficient of determination).

An Input Domain-Based Software Reliability Growth Model In Imperfect Debugging Environment (불완전 디버깅 환경에서 Input Domain에 기초한 소프트웨어 신뢰성 성장 모델)

  • Park, Joong-Yang;Kim, Young-Soon;Hwang, Yang-Sook
    • The KIPS Transactions:PartD
    • /
    • v.9D no.4
    • /
    • pp.659-666
    • /
    • 2002
  • Park, Seo and Kim (12) developed the input domain-based SRGM, which was able to quantitatively assess the reliability of a software system during the testing and operational phases. They assumed perfect debugging during testing and debugging phase. To make this input domain-based SRGM more realistic, this assumption should be relaxed. In this paper we generalize the input domain-based SRGM under imperfect debugging. Then its statistical characteristics are investigated.

Analysis of Timed Automata Model-based Testing Approaches and Case Study (타임드 오토마타 모델 기반 테스팅 기법 분석 및 사례 연구)

  • Kim, Hanseok;Jee, Eunkyoung;Bae, Doo-Hwan
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.2
    • /
    • pp.132-137
    • /
    • 2015
  • A real-time system is a system wherein the behavior of the system depends not only on the input but also on the timing of the input. Timed automata is a widely used model for real-time system modeling and analysis. Model-based testing is employed to check whether the system under test (SUT) works according to the model specifications by using test cases generated from models that represent software requirements. In this paper, a case study was performed applying the timed automata based testing tools, UPPAAL-TRON, UPPAAL-COVER and SYMBOLRT, to the same system. Comparison of the testing approaches and tools is then made based on the results of the case study.