• Title/Summary/Keyword: model vehicle

Search Result 4,749, Processing Time 0.031 seconds

Fructose 1.6-diphosphate Prevents Cyclooxygenase-2 and Matrix Metalloproteinases Expression by Inhibition of UVB-induced Signaling Cascades in HaCaT Keratinocytes (인체각질형성세포에서 Fructose 1,6-diphosphate의 자외선에 의해 유도되는 Cyclooxygenase-2 and Matrix Metalloproteinases의 발현억제기전)

  • Soo Mi, Ahn;Ji Hyun, Kim;Byeong Gon, Lee;Soo Hwan, Lee;Ih Seoup, Chang
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.247-251
    • /
    • 2004
  • UV radiation exerts various influences in the skin, including photoaging and inflammation (1). The MMPs (Matrix metalloproteinases), which are induced by UV irradiation, can degrade matrix proteins, and these results in a collagen deficiency in photodamaged skin that leads to skin wrinkling. It has been known that the production of PGE$_2$ stimulates MMPs expression, and inhibits procollagen (2). Thus, it is possible that the induction of MMPs and the inhibition of matrix protein synthesis by UV -induced PGE$_2$ may play some role in UV-induced collagen deficiency in photoaged skin. Fructose-1,6-diphosphate (FDP), a glycolytic metabolite, is reported to have cytoprotective effects against ischemia and postischemic reperfusion injury of brain and heart, presumably by augmenting anaerobic carbohydrate metabolism (3). And also, FDP significantly prevent skin aging by decreasing facial winkle compared with vehicle alone after 6 months of use. We studied the mechanism of anti-aging effect of FDP on UVB-irradiated HaCaT keratinocyte model. FDP has protective role in UVB injured keratinocyte by attenuating prostaglandin E$_2$ (PGE$_2$) production and COX-2 expression. And FDP also suppressed UVB-induced MMP-2 expression. Further, to delineate the inhibition of UVB-induced COX-2 and MMPs expression with cell signaling pathways, treatment of FDP to HaCaT keratinocytes resulted in marked inhibition of UVB-induced phosphorylation of ERK1/2, JNK. It also prevents UV induced NFB translocation, which are activated by cellular inflammatory signal. Our results indicate that FDP has protecting effects in UV-injured skin aging by decreasing UVB-induced COX-2 and MMPs expression, which are possibly through blocking UVB-induced signal cascades.

A study on traffic signal control at signalized intersections in VANETs (VANETs 환경에서 단일 교차로의 교통신호 제어방법에 관한 연구)

  • Chang, Hyeong-Jun;Park, Gwi-Tae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.6
    • /
    • pp.108-117
    • /
    • 2011
  • Seoul metropolitan government has been operating traffic signal control system with the name of COSMOS since 2001. COSMOS uses the degrees of saturation and congestion which are calculated by installing loop detectors. At present, inductive loop detector is generally used for detecting vehicles but it is inconvenient and costly for maintenance since it is buried on the road. In addition, the estimated queue length might be influenced in case of error occurred in measuring speed, because it only uses the speed of vehicles passing by the detector. A traffic signal control algorithm which enables smooth traffic flow at intersection is proposed. The proposed algorithm assigns vehicles to the group of each lane and calculates traffic volume and congestion degree using traffic information of each group using VANETs(Vehicular Ad-hoc Networks) inter-vehicle communication. It does not demand additional devices installation such as cameras, sensors or image processing units. In this paper, the algorithm we suggest is verified for AJWT(Average Junction Waiting Time) and TQL(Total Queue Length) under single intersection model based on GLD(Green Light District) Simulator. And the result is better than Random control method and Best first control method. In case real-time control method with VANETs is generalized, this research that suggests the technology of traffic control in signalized intersections using wireless communication will be highly useful.

Analysis on Factors of Traffic Accident on Roads having Width of Less than 9 Meters (폭원 9m 미만 도로 내 교통사고 영향 요인 분석)

  • Lim, You-Jin;Moon, Hak-Ryong;Kang, Won-Pyoung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.3
    • /
    • pp.96-106
    • /
    • 2014
  • Necessarily traffic policies have been biased in car than pedestrian, so pedestrian's environment is getting worse. Result of this situation our accident rate is high as 36.4%, compared to OECD member countries with average rate of 17.8%(in 2009). Increasing interest for pedestrians environment improvement, and it make an effort to build environment to guarantee walk and safety of pedestrians. Analysis on the binary logistic regression(BLR) was used. The dependent variable is occurring from the road width of less than 9m accident, and independent variable extracted can be obtained from the traffic accident data. Traffic accident on roads having width of less than 9 meters affecting variables is when the driver is straight, when the driver is female, when the pedestrian is walk driveway, and so on. To prevent it, efforts is demanded to protect handicapped, to build safe pedestrians environment using C-ITS and to decrease speed of going straight vehicle on roads having width of less than 9 meters.

Comparison between Numerical Results of 1D Beam and 2D Plane Stress Finite Element Analyses Considering Aspect Ratio of Cantilever Beams (캔틸레버보의 형상비에 따른 1차원 보와 2차원 평면응력 유한요소해석 결과의 비교)

  • Kang, Yoo-Jin;Sim, Ji-Soo;Cho, Hae-Sung;Shin, Sang-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.459-465
    • /
    • 2015
  • There exist different kinds of aircrafts, such as conventional airplane, rotorcraft, fighter, and unmanned aerial vehicle. Their shape and feature are dependent upon their own assigned mission. One of the fundamental analyses performed during the aircraft design is the structural analysis. It becomes more complicated and requires severe computations because of the recent complex trends in aircraft structure. In order for efficiency in the structural analysis, a simplified approach, such as equivalent beam or plate model, is preferred. However, it is not clear which analysis will be appropriate to analyze the realistic configuration, such as an aircraft wing, i.e., between an equivalent beam and plate analysis. It is necessary to assess the limitation for both the one-dimensional beam analysis and the two-dimensional plate theory. Thus, in this paper, the static structural analysis results obtained by EDISON solvers were compared with the three-dimensional results obtained from MSC NASTRAN. Before that, EDISON program was verified by comparing the results with those from MSC NASTRAN program and other analytic solutions.

A Fundamental Study to Estimate Construction Performance of Subsea Waterjet Trenching Machine (해저지반 굴삭용 워터젯 장비의 시공성능 추정에 관한 기초적 연구)

  • Na, Kyoung-Won;Beak, Dong-Il;Hwang, Jae-Hyuk;Han, Sung-Hoon;Jang, Min-Suk;Kim, Jae-Heui;Jo, Hyo-Jae
    • Journal of Navigation and Port Research
    • /
    • v.39 no.6
    • /
    • pp.539-544
    • /
    • 2015
  • There is drift toward moving offshore structures operating sites to deep water that brings subsea systems and types of apparatus to meet more severe environment than onshore. At this moment, climatic condition and seabed state affect trenching efficiency so trenching process is need to make steady progress in a short time. This paper is research on estimation about construction performance of waterjet trenching machine mounted on ROV trencher. Optimal number of nozzles that can maximize trenching efficiency is selected by considering clearance and angle of nozzles through CFD. Then verified effectiveness of waterjet apparatus on the result of trenching depth and velocity by model test analogized performance for construction work of waterjet trenching machine.

Road Accident Trends Analysis with Time Series Models for Various Road Types (도로종류별 교통사고 추세분석 및 시제열 분석모형 개발)

  • Han, Sang-Jin;Kim, Kewn-Jung
    • International Journal of Highway Engineering
    • /
    • v.9 no.3
    • /
    • pp.1-12
    • /
    • 2007
  • Roads in Korea can be classified into four types according to their responsible authorities. For example, Motorway is constructed, managed, and operated by the Korea Highway Corporation. Ministry of Construction and Transportation is in charge of National Highway, and Province Roads are run by each province government. Urban/county Roads are run by corresponding local government. This study analyses the trends of road accidents for each road type. For this purpose, the numbers of accidents, fatalities, and injuries are compared for each road type for last 15 years. The result shows that Urban/County Roads are the most dangerous, while Motorways are the safest, when we simply compare the numbers of accidents, fatalities, and injuries. However, when we compare these numbers by dividing by total road length, National Highway becomes the most dangerous while Province Roads becomes the safest. In the case of road accidents, fatalities, and injuries per vehicle km, which is known as the most objective comparison measure, it turns out that National Highway is the most dangerous roads again. This study also developed time series models to estimate trends of fatalities for each road type. These models will be useful when we set up or evaluate targets of national road safety.

  • PDF

Development of the Algorithm for Traffic Accident Auto-Detection in Signalized Intersection (신호교차로 내 실시간 교통사고 자동검지 알고리즘 개발)

  • O, Ju-Taek;Im, Jae-Geuk;Hwang, Bo-Hui
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.5
    • /
    • pp.97-111
    • /
    • 2009
  • Image-based traffic information collection systems have entered widespread adoption and use in many countries since these systems are not only capable of replacing existing loop-based detectors which have limitations in management and administration, but are also capable of providing and managing a wide variety of traffic related information. In addition, these systems are expanding rapidly in terms of purpose and scope of use. Currently, the utilization of image processing technology in the field of traffic accident management is limited to installing surveillance cameras on locations where traffic accidents are expected to occur and digitalizing of recorded data. Accurately recording the sequence of situations around a traffic accident in a signal intersection and then objectively and clearly analyzing how such accident occurred is more urgent and important than anything else in resolving a traffic accident. Therefore, in this research, we intend to present a technology capable of overcoming problems in which advanced existing technologies exhibited limitations in handling real-time due to large data capacity such as object separation of vehicles and tracking, which pose difficulties due to environmental diversities and changes at a signal intersection with complex traffic situations, as pointed out by many past researches while presenting and implementing an active and environmentally adaptive methodology capable of effectively reducing false detection situations which frequently occur even with the Gaussian complex model analytical method which has been considered the best among well-known environmental obstacle reduction methods. To prove that the technology developed by this research has performance advantage over existing automatic traffic accident recording systems, a test was performed by entering image data from an actually operating crossroad online in real-time. The test results were compared with the performance of other existing technologies.

Evaluation of Running Performance of the Composite Bogie under Different Side Beam Stiffness (사이드 빔 강성에 따른 복합소재 대차의 주행성능 평가)

  • Kim, Jung-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.86-92
    • /
    • 2017
  • In this study, a running performance evaluation and roller rig test was conducted to evaluate the applicability of a composite bogie frame, which has the role of the primary suspension. The composite bogie frame was made of a GEP224 glass/epoxy prepreg. Vehicle dynamic analysis was carried out on the composite bogie with three different kinds of side beam thicknesses (50 mm, 80 mm, and 150 mm). From the results, the composite bogie with a side beam thickness of 80 mm satisfied all the dynamic design requirements. Although the composite bogie with the side beam thickness of 50mm also met the design requirements, its critical speed was just a 2% margin to the requirement. In contrast, the model of the side beam thickness of 150mm did not meet the ride comfort. In addition, a composite bogie frame with the side beam thickness of 80 mm was fabricated and installed on a complete bogie. Moreover, the roller rig test using the fully equipped bogie was performed to evaluate the critical speed. During the test, the lateral excitation was imposed on the wheelsets to realize the rail irregularity. There was no divergence of the lateral displacement of the wheelsets while increasing the speed. The measured critical speed was similar to the predicted result.

Utilization of Unmanned Aerial Scanner for Investigation and Management of Forest Area (산림지역 조사 및 관리를 위한 무인항공 스캐너의 활용)

  • Lee, Keun-Wang;Park, Joon-Kyu
    • Journal of Digital Convergence
    • /
    • v.17 no.11
    • /
    • pp.189-194
    • /
    • 2019
  • Forest investigation is the basic data for forest preservation and forest resource development, and periodical data acquisition and management have been performed. However, most of the current forest investigations in Korea are surveys to grasp the current status of forests, and various applications have not been made as geospatial information. In this study, the unmanned aerial scanner was used to acquire and process data in the forest area and to present an efficient forest survey method through analysis of the results. Unmanned aerial scanners can extract ground below vegetation, effectively creating DEM for forest management. It can be used as geospatial information for forest investigation and management by generating accurate topographical data that is impossible in conventional photogrammetry. It can also be used to measure distances between power lines and vegetation or manage transmission lines in forest areas. The accurate vertical distance measurement for vegetation surveys can greatly improve the accuracy of labor measurement and work efficiency compared to conventional methods. In the future, the use of unmanned aerial scanners will improve the data acquisition efficiency in forest areas, and will contribute to improved accuracy and economic feasibility compared to conventional methods.

The Analysis of Bus Traffic Accident to Support Safe Driving for Bus Drivers (버스운전자 안전운행지원을 위한 교통사고 분석 연구)

  • BHIN, Miyoung;SON, Seulki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.1
    • /
    • pp.14-26
    • /
    • 2019
  • For bus drivers' safe driving, a policy that analyzes the causes of the drivers' traffic accidents and then assists their safe driving is required. Therefore, the Ministry of Land, Infrastructure and Transport set up its plan to gradually expand the equipping of commercial vehicles with FCWS (Forward Collision Warning System) and LDWS(Lane Departure Warning System), from the driver-supporting ADAS(Advanced Driver Assistance Systems). However, there is not much basic research on the analysis of bus drivers' traffic accidents in Korea. As such, the time is appropriate to research what is the most necessary ADAS for bus drivers going forward to prevent bus accidents. The purpose of this research is to analyze how serious the accidents were in the different bus routes and whether the accidents were repetitive, and to give recommendations on how to support ADAS for buses, as an improvement. A model of ordered logit was used to analyze how serious the accidents were and as a result, vehicle to pedestrian accidents which directly affected individuals were statistically significant in all of the models, and violations of regulations, such as speeding, traffic signal violation and violation of safeguards for passengers, were indicated in common in several models. Therefore, the pedestrian-sensor system and automatic emergency control device for pedestrian should be installed to reduce bus accidents directly affecting persons in the future, and education for drivers and ADAS are to be offered to reduce the violations of regulations.