• Title/Summary/Keyword: model trees

Search Result 633, Processing Time 0.026 seconds

Development of Habitat Suitability Index (HSI) Model for Mandarin duck (Aix galericulata) and Great spotted woodpeckers (Dendrocopos major) (도시에 서식하는 원앙과 오색딱다구리의 서식 적합성 지수(HSI) 모델 개발)

  • Park, June-Young;Song, Young-Keun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.1
    • /
    • pp.37-51
    • /
    • 2021
  • The purpose of this research is to develop the Habitat Suitability Index (HSI) for habitat environments of Aix galericulata (A. galericulata) and Dendrocopos major (D. major), which tend to inhabit urban environments. A. galericulata and D. major are the keystone species representing the ecosystem of wetlands and forests. Based on the analysis of their urban habitat environments, this study selects artificially adjustable levels of the environmental index in order to produce the HSI model, which can be used when either restoring or creating the urban habitats for these species. To develop the HSI, we conducted field surveys at Jungnangcheon Stream, Changgyeonggung, Jangneung, Bangbae Neighborhood Park, Gildong Ecological Park, and Seodalsan Mountain. These surveys were conducted between April and August 2020, and this period includes the breeding season of both A. galericulata and D. major. Based on our findings from the surveys, we conclude that there are six SI factors for A. galericulata. These include (1) the presence of alluvial islands, (2) waterfront vegetation cover rate, (3) type of aquatic plants for food, (4) size of forest patch, (5) type of trees in nearby forests, and (6) connectivity of waterfront and forest. We also conclude that there are five SI factors for D. major, which include (1) size of forest patch, (2) rate of broadleaf trees in forest patches, (3) type of nesting trees, (4) diameter at breast height (DBH) of nesting trees, and (5) density of dead trees. The result of this research can provide future studies with useful guidance when both (1) comparing the habitat suitability of the target species in different environments and (2) restoring or creating habitats for these species.

Dose Estimation Model for Terminal Buds in Radioactively Contaminated Fir Trees

  • Kawaguchi, Isao;Kido, Hiroko;Watanabe, Yoshito
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.3
    • /
    • pp.143-151
    • /
    • 2022
  • Background: After the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, biological alterations in the natural biota, including morphological changes of fir trees in forests surrounding the power plant, have been reported. Focusing on the terminal buds involved in the morphological formation of fir trees, this study developed a method for estimating the absorbed radiation dose rate using radionuclide distribution measurements from tree organs. Materials and Methods: A phantom composed of three-dimensional (3D) tree organs was constructed for the three upper whorls of the fir tree. A terminal bud was evaluated using Monte Carlo simulations for the absorbed dose rate of radionuclides in the tree organs of the whorls. Evaluation of the absorbed dose targeted 131I, 134Cs, and 137Cs, the main radionuclides subsequent to the FDNPP accident. The dose contribution from each tree organ was calculated separately using dose coefficients (DC), which express the ratio between the average activity concentration of a radionuclide in each tree organ and the dose rate at the terminal bud. Results and Discussion: The dose estimation indicated that the radionuclides in the terminal bud and bud scale contributed to the absorbed dose rate mainly by beta rays, whereas those in 1-year-old trunk/branches and leaves were contributed by gamma rays. However, the dose contribution from radionuclides in the lower trunk/branches and leaves was negligible. Conclusion: The fir tree model provides organ-specific DC values, which are satisfactory for the practical calculation of the absorbed dose rate of radiation from inside the tree. These calculations are based on the measurement of radionuclide concentrations in tree organs on the 1-year-old leader shoots of fir trees. With the addition of direct gamma ray measurements of the absorbed dose rate from the tree environment, the total absorbed dose rate was estimated in the terminal bud of fir trees in contaminated forests.

A Study of The planting Arrangement of Ornamental Trees And Shrubs in Intermane Buddhist Temples. (산지형 사찰에 있어 조경식물 배치형식에 관한 연구)

  • Shim, Jai-Sung;Bae, Jeong-Kwan;Seo, Byung-Key
    • The Journal of Natural Sciences
    • /
    • v.14 no.1
    • /
    • pp.63-81
    • /
    • 2004
  • It is the purpose of this study to arrange in ornamental trees and shrubs the planting that leads to an appropriate type of templescape. The study was designed primarily as an examples for each Buddhist temple which desires further decoration with several ornamental plants, doubles the effectiveness of the Sen-Buddhist meditation, and boosts tourists' attraction. To investigate the planting status and type of trees and shrubs in the precincts of Buddhism temples, We close three temples : They are Nagsansa, Boolgoogsa and Booseugsa, which are intermonatane area temples all together. The results investigated were summarized as follows :1. Planting status and pattern in temples Open spaces of the Daewoogjeon in all temples, a main Sanctuaries in temple buildings, where Buddha is enshrined in, we could not find any kind of trees of shrubs to be planted.Muryangsujeon, a symbol of "Future", which can be also found at Boosugsa temple, is living in Western Elysium world and takes mercy on mankind of this life. Taxus cuspidata was planted at this Muryangsujeon, known as an immeasurable bliss building, where an Amitabha is enshrined in.Total 25 species of trees and shrubs were planted around Birozani building of Buddhist temples, Birozani is enshrined at the Birojion of Boollgoogsa temple.The buddhist Goddess of Mercy which is a buddhist saint for pursuit of fortune and blessing to relieve the mankind is enshrined at Wonchonjeon, Daebijeon and Kwaneumjeon which are able to observe at both Boolgoogsa and Nagsnsa temples, where Euonymus japonicus trees including other 26 species could be found in common at both temples.2. Correlation between trees/shrubs and temple buildingsTrees and flowers symbolizing Buddha are often planted as material sources of gardening to decorate : They are Logerstroemia indica as Buddha's flower, Viburmum opulus var. calvescens resembling Buddha's head, Tilia mandshurica producing the beads of rosary, Gardenia jaminoides Ellis with white flower blade and flower of bliss, not flower to this day and Lotus flowering clearly in the pond filling with dirty water which is able to clarifies the world full of crime, infidelity and injustification. Among these Buddhist' plants, however, Logerstroemia indica could be found in all three temples, and Viburmum opulus var. calvescens at both Nagsansa and Boosugsa. Also, Lager stroemia indica was planted at all three temples and Viburmum opulus var. calvescens at both temples of Nagsansa and Boosugsa. Tilia mandshurica and Gardenia jasminoides Ellis were not found in any temples which might become the subject of investigation.In relation of the buildings of each temples as a sanctified space, the planting of trees and shrubs was not considered for the arrangement, templescape architecture or species. And, also, we could not find in the study any special relationship of trees/ shrubs with the characteristics of temples.With the results obtained through precise studies we presented here in this paper newly designed model of templescape in intermane buddhist temple which can be applied for planting and arrangement of trees or/and shrubs. Basic principles of model in mind are:To consider the correlation of the dominant between plants and temple buildings.To plant trees/shrubs for special functions as well as conditions of temple location.To make tree arrangement correlating to Buddhism spirit.To induce environment friendly plants to be planted, suitable to regional conditions.This redecorated model of templescape might be used as a canon of the tree planting and arrangement in the precincts of Buddhism temples.

  • PDF

Tree Biotechnology and Environmental Concerns

  • Kant, Tarun;Emmanuel, C.J.S.K.
    • Journal of Plant Biotechnology
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • Forestry sector has witnessed some unprecedented events in the recent past both in terms of galloping biotechnological developments and heated environmental debates over risks associated with release of transgenic trees. Improvements in the in vitro propagation techniques has made it possible to develop tissue culture based plant regeneration protocols just for about any tree species. And with the inclusion of every new species within the realms of tissue culture technology, it becomes a candidate for genetic improvement through recombinant DNA technology, the so called genetic engineering. Poplars and their hybrids serve as the model tree species on which most of the genetic transformation work as been carried out. A lot of work has also gone in genetic transformation of fruit trees and trees of horticultural interests. Trees have been successfully transformed for traits ranging from reduction of length of juvenile phase to alteration of tree architecture to altering wood quality by lignin and cellulose modification. More-over trees have been genetically engineered successfully to combat various types of insect pests and pathogens causing diseases. But all these developments have ignited controversies over the possible benefits and risks associated with transgenic plantations by various environmental agencies and activists. Solutions to most of these concerns can be found out with more intensive prioritized research.

A Study on the Evaluation of Woody Tree Vitality of Artificial Ground: Case Study of Seoullo 7017

  • Park, Seong-uk;Hong, Youn-Soon
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.1
    • /
    • pp.85-94
    • /
    • 2021
  • Background and objective: This study examined, compared, and analyzed the tree vitality of the trees growing on the artificial ground of Seoullo 7017 that transformed the overpass that was to be demolished into a "sky garden" using portable tree pots. Methods: Based on the summer season when the metabolic activity of plants is most active, this study measured the cambial electrical resistance in four directions(east, west, south and north), using the Shigometer (model OZ-93, Osmose) and compared the location and analysis of pots according to their means and standard errors. Results: Meanwhile, according to the analysis, vitality was relatively superior in pots with a big diameter, trees planted individually than in groups, trees of the ramp section rather than the bridge section, and in the southwest direction of the cambium. Conclusion: This study revealed the improper condition of the planting plan and implementation on the site, where various species of trees are displayed in a poor environment. Despite the significant assessment of the vitality of various trees introduced within Seoullo 7017 for the first time, this study is limited in that the data used were measured only once in summer. In this regard, it raised the need for continuous interest in and monitoring of a special plant environment and development of proper maintenance and management techniques, along with follow-up research on seasonal and temperature conditions, soil moisture and root development conditions to supplement this research.

Individual Tree Growth Models for Natural Mixed Forests in Changbai Mountains, Northeast China

  • Lu, Jun;Li, Fengri
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.2
    • /
    • pp.160-169
    • /
    • 2007
  • The data used to develop distance-independent individual models for natural mixed forests were collected from 712 remeasured permanent sample plots (25,526 trees) of 10-year periodic from 1990 to 2000 in Baihe Forest Bureau of Changbai Mountains, northeast China. Based on analyzing relationship between diameter increment of individual trees with tree size, competitive status, and site condition, the diameter growth models for individual trees of 15 species growing in mixed-species uneven-aged forest stands, that have simple form, good predicting precision, and easily applicable, were developed using stepwise regression method. The main variables influencing on diameter increment of individual trees were tree size and competition, however, the site conditions were not significantly related with diameter increment. The tree size variables (lnDBH and $DBH^2$) were the most significant and important predictors of diameter growth existing in all 15 growth models. The diameter increment was directly proportional to tree diameter for each species. For the competitive factors in growth model, the relative diameter (RD), canopy closure (P), and the ratio of diameter of subject tree with maximum diameter (DDM) were contributed to the diameter increment at a certain extent. Other measures of stand density, such as basal area of stand (G) and stand density index (SDI), were not significantly influenced on diameter increment. Site factors, such as site index, slope and aspect were not important to diameter increment and excluded in the final models. The total variance explained by the final models of squared diameter increment ($R^2$) for all 15 species ranged from 35% to 72% and these results compared quit closely with those of Wykoff (1990) for mixed conifer stands. Using independent data set, validation measures were evaluated for predicting models of diameter increment developed in this study. The result indicated that the estimated precision was all greater than 94% and the models were suitable to describe diameter increment.

A maximum likelihood approach to infer demographic models

  • Chung, Yujin
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.3
    • /
    • pp.385-395
    • /
    • 2020
  • We present a new maximum likelihood approach to estimate demographic history using genomic data sampled from two populations. A demographic model such as an isolation-with-migration (IM) model explains the genetic divergence of two populations split away from their common ancestral population. The standard probability model for an IM model contains a latent variable called genealogy that represents gene-specific evolutionary paths and links the genetic data to the IM model. Under an IM model, a genealogy consists of two kinds of evolutionary paths of genetic data: vertical inheritance paths (coalescent events) through generations and horizontal paths (migration events) between populations. The computational complexity of the IM model inference is one of the major limitations to analyze genomic data. We propose a fast maximum likelihood approach to estimate IM models from genomic data. The first step analyzes genomic data and maximizes the likelihood of a coalescent tree that contains vertical paths of genealogy. The second step analyzes the estimated coalescent trees and finds the parameter values of an IM model, which maximizes the distribution of the coalescent trees after taking account of possible migration events. We evaluate the performance of the new method by analyses of simulated data and genomic data from two subspecies of common chimpanzees in Africa.

A Study on Model Development for the Density Management of Overcrowded Planting Sites and the Planting Design of New Planting Sites - A Case Study of Buffer Green Spaces in the Dongtan New Town, Hwaseong - (과밀식재지 밀도관리 및 신규식재지 배식설계 모델 개발 연구 - 화성시 동탄신도시 완충녹지를 대상으로 -)

  • Choi, Jin-Woo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.5
    • /
    • pp.82-92
    • /
    • 2018
  • The purpose of this study is to develop a model for the density management of planting sites and an additional model for new planting sites. In the Dongtan New Town of Hwaseong, there are buffer green spaces, with widths between 8m and 15m, between roads and apartment complexes. A total 38 survey plots were set to examine the planting patterns and the density of landscape trees. The Crown Overlapping Index (COI) was developed to assess the level of overcrowding as far as tree growth and development effectively. Pinus strobus recorded the most serious level of overcrowding growth and development. Its average density and average COI were very high at $0.3trees/m^2$ and 35.6%, respectively. There were many areas in which its COI was above 45%. The criteria for density management were set by standardizing the COI into three levels, which were above 45% (Type A), 30~45% (Type B), and under 30% (Type C). A model was proposed to manage poorly growing trees and to develop a model to select and manage trees of similar specification based on the planting patterns. The trees of density management areas were reviewed in terms of tree types and the ease of transplanting to establish an application system for the management plans according to the possibility of transplanting, thinning, and pruning. In new buffer green spaces, the planting density of Pinus strobus was lowered to $0.20{\sim}0.25trees/m^2$, with that of shrubs being reduced to $1.5{\sim}2.0trees/m^2$, leading to a planting design model to cover the lower parts in at least 30~40%.

Radiation Dose Assessment Model for Terrestrial Flora and Fauna and Its Application to the Environment near Fukushima Accident

  • Keum, Dong-Kwon;Jeong, Hyojoon;Jun, In;Lim, Kwang-Muk;Choi, Yong-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.1
    • /
    • pp.16-25
    • /
    • 2020
  • Background: To investigate radiological effects on biota, it is necessary to assess radiation dose for flora and fauna living in a terrestrial ecosystem. This paper presents a dynamic model to assess radioactivity concentration and radiation dose of terrestrial flora and fauna after a nuclear accident. Materials and Methods: Litter, organic soil, mineral soil, trees, wild crops, herbivores, omnivores, and carnivores are considered the major components of a terrestrial ecosystem. The model considers the physicochemical and biological processes of interception, weathering, decomposition of litter, percolation, root uptake, leaching, radioactive decay, and biological loss of animals. The predictive capability of the model was investigated by comparison of its predictions with field data for biota measured in the Fukushima forest area after the Fukushima nuclear accident. Results and Discussion: The predicted radioactive cesium inventories for trees agreed well with those for evergreens and deciduous trees sampled in the Fukushima area. The predicted temporal radioactivity concentrations for animals were within the range of the measured radioactivity concentrations of deer, wild boars, and black bears. The radiation dose for the animals were, for the whole simulation time, estimated to be much smaller than the lower limit (0.1 mGy·d-1) of the derived consideration reference level given by the International Commission on Radiological Protection for terrestrial flora and fauna. This suggested that the radiation effect of the accident on the biota in the Fukushima forest would be insignificant. Conclusion: The present dynamic model can be used effectively to investigate the radiological risk to terrestrial ecosystems following a nuclear accident.