• Title/Summary/Keyword: model singularity

Search Result 115, Processing Time 0.024 seconds

Localization Analysis of Concrete using Bifurcation Theory (분기이론에 의한 콘크리트의 국소화 해석)

  • 송하원;우승민;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.353-358
    • /
    • 1998
  • The strain localization is a discontinuous phenomenon that addresses the formation of jumps of the field variables across a singularity surface. It has become widely accepted that the localization may occur as the result of discontinuous bifurcation which corresponds to the loss of ellipticity of the governing differential equations for elasto-plastic continua. In this paper, condition for strain localization in concrete based on bifurcation theory is studied and localization tensor analysis algorithm is employed to determine the directions of localization of deformations in concrete. By applying a plasticity model of concrete into the algorithm, localization analysis is performed concrete under uniaxial tension, pure shear and uniaxial compression.

  • PDF

Adaptive Backstepping Control of Induction Motors Using Neural Network (신경회로망을 이용한 유도전동기의 적응 백스테핑 제어)

  • Lee, Eun-Wook;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.452-455
    • /
    • 2003
  • Based on a field-oriented model of induction motor, adaptive backstepping approach using neural network(RBFN) is proposed for the control of induction motor in this paper. In order to achieve the speed regulation with the consideration of avoiding singularity and improving power efficiency, rotor angular speed and flux amplitude tracking objectives are formulated. rotor resistance uncertainty is compensated by adaptive backstepping and mechanical lumped uncertainty such as load torque disturbance, inertia moment, friction by RBFN. Simulation is provided to verify the effectiveness of the proposed approach.

  • PDF

Dynamic characteristics of an LDPE autoclave reactor with heat transfer

  • Lee, Jinsuk;Chang, Kil-Sang;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1627-1632
    • /
    • 1991
  • A compact type LDPE autoclave reactor is analyzed with respect to the effects of the initiator feed concentration and the rate of heat transfer by employing the mixing-cell model with backflow. Singularity theory is applied for the single-cell model so that one can construct all the possible bifurcation diagrams. Since the single-cell model may not be adequate for the actual reactor, a two-cell model is also treated to predict the dynamic behavior of the reactor. As the rate of heat transfer increases, various multiplicity patterns and oscillatory motions are found. Apparently, the monomer conversion can be substantially increased with proper he-at removal and initiator supplement scheme. For this, however, the complex dynamic features accompanied must be taken into consideration in the reactor design.

  • PDF

MODELING ACCURATE INTEREST IN CASH FLOWS OF CONSTRUCTION PROJECTS TOWARD IMPROVED FORECASTING OF COST OF CAPITAL

  • Gunnar Lucko;Richard C. Thompson, Jr.
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.467-474
    • /
    • 2013
  • Construction contactors must continuously seek to improve their cash flows, which reside at the heart of their financial success. They require careful planning, analysis, and optimization to avoid the risk of bankruptcy, remain profitable, and secure long-term growth. Sources of cash include bank loans and retained earnings, which are conceptually similar in that they both incur a cost of capital. Financial management therefore requires accurate yet customizable modeling capabilities that can quantify all expenses, including said cost of capital. However, currently existing cash flow models in construction engineering and management have strongly simplified the manner in which interest is assessed, which may even lead to overstating it at a disadvantage to contractors. The variable nature of cash balances, especially in the early phases of construction projects, contribute to this challenging issue. This research therefore extends a new cash flow model with an accurate interest calculation. It utilizes singularity functions, so called because of their ability to flexibly model changes across any number of different ranges. The interest function is continuous for activity costs of any duration and allows the realistic case that activities may begin between integer time periods, which are often calendar months. Such fractional interest calculation has hitherto been lacking from the literature. It also provides insights into the self-referential behavior of compound interest for variable cash balances. The contribution of this study is twofold; augmenting the corpus of financial analysis theory with a new interest formula, whose strengths include its generic nature and that it can be evaluated at any fractional value of time, and providing construction managers with a tool to help improve and fine-tune the financial performance of their projects.

  • PDF

Precision shape modeling by z-map model

  • Park, Jung-Whan;Chung, Yun-Chan;Choi, Byoung-Kyn
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.1
    • /
    • pp.49-56
    • /
    • 2002
  • The Z-map is a special farm of discrete non-parametric representation in which the height values at grid points on the xy-plane are stored as a 2D array z[ij]. While the z-map is the simplest farm of representing sculptured surfaces and is the most versatile scheme for modeling non-parametric objects, its practical application in industry (eg, tool-path generation) has aroused much controversy over its weaknesses, namely its inaccuracy, singularity (eg, vertical wall), and some excessive storage needs. Much research or the application of the z-map can be found in various articles, however, research on the systematic analysis of sculptured surface shape representation via the z-map model is rather rare. Presented in this paper are the following: shape modeling power of the simple z-map model, exact (within tolerance) z-map representation of sculptured surfaces which have some feature-shapes such as vertical-walls and real sharp-edges by adopting some complementary z-map models, and some application examples.

Precision Shape Modeling by Z-Map Model (Z-map 모델을 이용한 정밀형상 모델링)

  • 박정환;정연찬;최병규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.180-188
    • /
    • 1998
  • Z-map is a special form of discrete nonparametric representation in which the height values at grid points on the xy-plane are stored as a 2D array z[i.j]. While z-map is the simplest form of representing sculptured surfaces and it is the most versatile scheme for modeling nonparametric objects, its practical application in industry (eg, tool-path generation) aroused much controversy over its weaknesses ; accuracy, singularity (eg, vertical wall), and some excessive storage needs. Although z-map has such limitations, much research on the application of z-map can be found in various articles. However, research on the systematic analysis of sculptured surface shape representation via z-map model is rather rare. Presented in this paper are the following: shape modeling power of the simple z-map model, exact (within tolerance) B-map representation of sculptured surfaces which have some feature-shapes such as vertical-walls and real sharp-edges by adopting some complementary B-map models, and some application examples.

  • PDF

Human Motion Tracking by Combining View-based and Model-based Methods for Monocular Video Sequences (하나의 비디오 입력을 위한 모습 기반법과 모델 사용법을 혼용한 사람 동작 추적법)

  • Park, Ji-Hun;Park, Sang-Ho;Aggarwal, J.K.
    • The KIPS Transactions:PartB
    • /
    • v.10B no.6
    • /
    • pp.657-664
    • /
    • 2003
  • Reliable tracking of moving humans is essential to motion estimation, video surveillance and human-computer interface. This paper presents a new approach to human motion tracking that combines appearance-based and model-based techniques. Monocular color video is processed at both pixel level and object level. At the pixel level, a Gaussian mixture model is used to train and classily individual pixel colors. At the object level, a 3D human body model projected on a 2D image plane is used to fit the image data. Our method does not use inverse kinematics due to the singularity problem. While many others use stochastic sampling for model-based motion tracking, our method is purely dependent on nonlinear programming. We convert the human motion tracking problem into a nonlinear programming problem. A cost function for parameter optimization is used to estimate the degree of the overlapping between the foreground input image silhouette and a projected 3D model body silhouette. The overlapping is computed using computational geometry by converting a set of pixels from the image domain to a polygon in the real projection plane domain. Our method is used to recognize various human motions. Motion tracking results from video sequences are very encouraging.

Feasibility Study of Friction Characteristics for Impact Analysis (충돌 해석 시 마찰 모델 적용을 위한 기초 마찰 시험 연구)

  • Lee, Kwang-Hee;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.37 no.3
    • /
    • pp.112-116
    • /
    • 2021
  • Appropriate friction model usage is important for impact analysis because the relative motions between parts that are in contact for very short durations can vary greatly depending on the friction model. Vehicle seat components that have significant effects on impact analysis are also considered. This paper presents an experimental investigation of various material contact pairs to obtain the friction parameters of the Benson exponential friction model for impact simulation. The Coulomb friction model has limitations for impact analysis because of singularity at zero velocity. Metal/nonmetal materials are prepared, and friction tests are conducted for various sliding speeds, loads, and lubrication conditions. The obtained data are used in the friction model to implement finite element analysis. The parameters of the friction model are obtained by the curve-fitting method. The experimental results show that the friction coefficient with metal/nonmetal contact pairs is stable regardless of the working conditions. The friction model used in this study can also be applied for finite element analysis of the crash conditions, where the friction changes abruptly at the contact interface; the obtained friction parameters are also expected to be more accurate with more precise tests under different working conditions. These results can help improve the accuracy of the finite element analysis.

STABILITY ANALYSIS OF REGULARIZED VISCOUS VORTEX SHEETS

  • Sohn, Sung-Ik
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.843-852
    • /
    • 2016
  • A vortex sheet is susceptible to the Kelvin-Helmhotz instability, which leads to a singularity at finite time. The vortex blob model provided a regularization for the motion of vortex sheets in an inviscid fluid. In this paper, we consider the blob model for viscous vortex sheets and present a linear stability analysis for regularized sheets. We show that the diffusing viscous vortex sheet is unstable to small perturbations, regardless of the regularization, but the viscous sheet in the sharp limit becomes stable, when the regularization is applied. Both the regularization parameter and viscosity damp the growth rate of the sharp viscous vortex sheet for large wavenumbers, but the regularization parameter gives more significant effects than viscosity.

Indirect Adaptive Regulator Design Based on TSK Fuzzy Models

  • Park Chang-Woo;Choi Jun-Hyuk;Sung Ha-Gyeong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.52-57
    • /
    • 2006
  • In this paper, we have proposed a new adaptive fuzzy control algorithm based on Takagi-Sugeno fuzzy model. The regulation problem for the uncertain SISO nonlinear system is solved by the proposed algorithm. Using the advanced stability theory, the stability of the state, the control gain and the parameter approximation error is proved. Unlike the existing feedback linearization based methods, the proposed algorithm can guarantee the global stability in the presence of the singularity in the inverse dynamics of the plant. The performance of the proposed algorithm is demonstrated through the problem of balancing and swing-up of an inverted pendulum on a cart.