• Title/Summary/Keyword: model reference control

Search Result 1,166, Processing Time 0.03 seconds

Maximum Torque Control of IPMSM using ALM-FNN and MFC Controller (ALM-FNN 및 MFC 제어기를 이용한 IPMSM 최대토크 제어)

  • Jung, Byung-Jin;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Kim, Do-Yeon;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.26-28
    • /
    • 2009
  • This paper proposes maximum torque control of IPMSM drive using adaptive teaming mechanism-fuzzy neural network (ALM-FNN) controller, model reference adaptive fuzzy tonal(MFC) and artificial neural network(ANN). This control method is applicable over the entire speed range which considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using ALM-FNN, MFC and ANN controller. The proposed control algorithm is applied to IPMSM drive system controlled ALM-FNN, MFC and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper proposes the analysis results to verify the effectiveness of the ALM-FNN, MFC and ANN controller.

  • PDF

Experimental Studies of Real- Time Decentralized Neural Network Control for an X-Y Table Robot

  • Cho, Hyun-Taek;Kim, Sung-Su;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.185-191
    • /
    • 2008
  • In this paper, experimental studies of a neural network (NN) control technique for non-model based position control of the x-y table robot are presented. Decentralized neural networks are used to control each axis of the x-y table robot separately. For an each neural network compensator, an inverse control technique is used. The neural network control technique called the reference compensation technique (RCT) is conceptually different from the existing neural controllers in that the NN controller compensates for uncertainties in the dynamical system by modifying desired trajectories. The back-propagation learning algorithm is developed in a real time DSP board for on-line learning. Practical real time position control experiments are conducted on the x-y table robot. Experimental results of using neural networks show more excellent position tracking than that of when PD controllers are used only.

A comparative study of different active heave compensation approaches

  • Zinage, Shrenik;Somayajula, Abhilash
    • Ocean Systems Engineering
    • /
    • v.10 no.4
    • /
    • pp.373-397
    • /
    • 2020
  • Heave compensation is a vital part of various marine and offshore operations. It is used in various applications, including the transfer of cargo between two vessels in the open ocean, installation of topsides of an offshore structure, offshore drilling and for surveillance, reconnaissance and monitoring. These applications typically involve a load suspended from a hydraulically powered winch that is connected to a vessel that is undergoing dynamic motion in the ocean environment. The goal in these applications is to design a winch controller to keep the load at a regulated height by rejecting the net heave motion of the winch arising from ship motions at sea. In this study, we analyze and compare the performance of various control algorithms in stabilizing a suspended load while the vessel is subjected to changing sea conditions. The KCS container ship is chosen as the vessel undergoing dynamic motion in the ocean. The negative of the net heave motion at the winch is provided as a reference signal to track. Various control strategies like Proportional-Derivative (PD) Control, Model Predictive Control (MPC), Linear Quadratic Integral Control (LQI), and Sliding Mode Control (SMC) are implemented and tuned for effective heave compensation. The performance of the controllers is compared with respect to heave compensation, disturbance rejection and noise attenuation.

Design of a real time adaptive controller for industrial robot using TMS320C31 chip (TMS320C31칩을 사용한 산엽용 로보트의 실시간 적응 제어기 설계)

  • Han, S.H.;Kim, Y.T.;Lee, M.H.;Kim, S.K.;Kim, J.O.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.94-104
    • /
    • 1996
  • This paper presents a new approach to the design of adaptive control system using DSPs(TMS320C31) for robotic manpulators to achieve accurate trajectory tracking by the joint angles Digital signal processors are used in implementing real time adaptive control algorithms to provide an enhanced motion control for robotic manipulators. In the proposed contorl scheme, adaptation laws are derived from the improved Lyapunov second stability analysis method based on the adaptive model reference control theory. The adaptive controller consists of an adaptive feedforward controller, feedback controller, and PID type time varying auxillary control elements. The proposed adaptive control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Morever, this scheme does not require an accurate dynamic modeling nor values of manpipulator parameters and payload. Performance of the adaptive controller is illustated by simulation and experimental results for a SCARA robot.

  • PDF

A Study on the Accuracy of GNSS Height Measurement Using Public Control Points (공공기준점을 이용한 GNSS 높이측량 정밀도 분석 연구)

  • WON, Doo-Kyeon;CHOI, Yun-Soo;YOON, Ha-Su;LEE, Won-Jong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.2
    • /
    • pp.78-90
    • /
    • 2021
  • In order to construct a precision geoid, it has been diversified into land, sea, aviation, and satellite gravity measurement methods, and measurement technology has developed, making it possible to secure high-resolution, high-precision gravity data. The construction of precision geoids can be fast and conveniently decided through GNSS surveys without separate leveling, and since 2014, the National Geographic Information Institute has been developing a hybrid geoid model to improve the accuracy of height surveying based on GNSS. In this study, the results of the GNSS height measurement were compared and analyzed choosing existing public reference points to verify the GNSS height measurement of public surveys. Experiments are conducted with GNSS height measurements and analyzed precision for public reference points on coastal, border, and mountainous terrain presented as low-precision areas or expected-to-be low-precision in research reports. To verify the GNSS height measurement, the GNSS ellipsoid height of the surrounding integrated datum to be used as a base point for the GNSS height measurement at the public datum. Based on the checked integrated datum, the GNSS ellipsoid of the public datum was calculated, and the elevation was calculated using the KNGeoid18 model and compared with the results of the direct level measurement elevation. The analysis showed that the results of GNSS height measurement at public reference points in the coastal, border, and mountainous areas were satisfied with the accuracy of public level measurement in grades 3 and 4. Through this study, GNSS level measurement can be used more efficiently than existing direct level measurements depending on the height accuracy required by users, and KNGeoids 18 can also be used in various fields such as autonomous vehicles and unmanned aerial vehicles.

A Design of Model Following Optimal Multivariable BOiler-Turbine H_\infty Control System using Genetic Algorithm (유전 알고리즘을 이용한 모델 추종형 최적 다변수 보일러-터빈 H_\infty제어 시스템의 세계)

  • Hwang, Hyeon-Jun;Kim, Dong-Wan;Park, Jun-Ho;Hwang, Chang-Seon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.2
    • /
    • pp.127-135
    • /
    • 1999
  • Multivarialbe Boiler-Turbine H_\infty Control System Genetic Algorithm Weighting Functions $W_1$(s), $W_2$(s), and design parameter $\gamma$ that are given by Glover-Doyle algorithm, to optimally follow the output of reference model. The first method to do this is that the gains of weighting functions $W_1$(s), $W_2$(s), and design parameter are optimized simultaneously by genetic algorithm with the tournament method that can search more diversely, in the search domain which guarantees the robust stability of system. And the second method is that not only by genetic algorithm with the roulette-wheel method that can search more fast, in that search domain. The boiler-turbine H_\infty control system designed by theabove second method has not only the robust stability to a modeling error but also the the better command tracking preformance than those of the H_\infty control system designed by trial-and-error method and the above first method. Also, this boiler-turbine H_\infty control system has the better performance than that of the LQG/LTR contro lsystem. The effectiveness of this boiler-turbineH_\infty control system is verified by computer simulation.

  • PDF

A Study on the Speed Sensorless Vector Control for Induction Motor Adaptive Control Method using a High Frequency Boost Chopper of Hybrid Type Piezoelectric Transformer (하이브리드형 압전 변압기의 고주파 승압 초퍼를 이용한 적응제어기법 유도전동기 속도 센서리스 벡터제어에 관한 연구)

  • Hwang, Lark-Hoon;Na, Seung-Kwon;Kim, Yeong-Wook;Choi, Song-Shik
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.3
    • /
    • pp.332-345
    • /
    • 2013
  • In this paper, recently, it is described to the piezoelectric transformer technology develops, because it was have to favorable characteristics such as electromagnetic-noise free, compact size, higher efficiency, and superior power density, flux linkage, noiseless, etc. its resonance frequency was used to output waveform of a sine wave. A rotor speed identification method of induction motor based on the theory of flux model reference adaptive system(FMRAS). The estimator execute the rotor speed identification so that the vector control of the induction motor may be achieved. The improved auxiliary variable of the model are introduced to perform accurate rotor speed estimation. The control system is composed of the PI controller for speed control and the current controller using space voltage vector PWM techniuqe and DC-DC converter. High speed calculation and processing for vector control is carried out by digital signal one chip microprocessor. Validity of the proposed control method is verified through simulation and experimental results.

Comparative Analysis and Implications of Command and Control(C2)-related Information Exchange Models (지휘통제 관련 정보교환모델 비교분석 및 시사점)

  • Kim, Kunyoung;Park, Gyudong;Sohn, Mye
    • Journal of Internet Computing and Services
    • /
    • v.23 no.6
    • /
    • pp.59-69
    • /
    • 2022
  • For effective battlefield situation awareness and command resolution, information exchange without seams between systems is essential. However, since each system was developed independently for its own purposes, it is necessary to ensure interoperability between systems in order to effectively exchange information. In the case of our military, semantic interoperability is guaranteed by utilizing the common message format for data exchange. However, simply standardizing the data exchange format cannot sufficiently guarantee interoperability between systems. Currently, the U.S. and NATO are developing and utilizing information exchange models to achieve semantic interoperability further than guaranteeing a data exchange format. The information exchange models are the common vocabulary or reference model,which are used to ensure the exchange of information between systems at the content-meaning level. The information exchange models developed and utilized in the United States initially focused on exchanging information directly related to the battlefield situation, but it has developed into the universal form that can be used by whole government departments and related organizations. On the other hand, NATO focused on strictly expressing the concepts necessary to carry out joint military operations among the countries, and the scope of the models was also limited to the concepts related to command and control. In this paper, the background, purpose, and characteristics of the information exchange models developed and used in the United States and NATO were identified, and comparative analysis was performed. Through this, we intend to present implications when developing a Korean information exchange model in the future.

A Novel Discrete-Time Predictive Current Control for PMSM

  • Sun, Jung-Won;Suh, Jin-Ho;Lee, Young-Jin;Lee, Kwon-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1915-1919
    • /
    • 2004
  • In this paper, we propose a new discrete-time predictive current controller for a PMSM(Permanent Magnet Synchronous Motor). The main objectives of the current controllers are to ensure that the measured stator currents tract the command values accurately and to shorten the transient interval as much as possible, in order to obtain high-performance of ac drive system. The conventional predictive current controller is hard to implement in full digital current controller since a finite calculation time causes a delay between the current sensing time and the time that it takes to apply the voltage to motor. A new control strategy in this paper is seen the scheme that gets the fast adaptation of transient current change, the fast transient response tracking and is proposed simplified calculation. Moreover, the validity of the proposed method is demonstrated by numerical simulations and the simulation results will be verified the improvements of predictive controller and accuracy of the current controller.

  • PDF

Fast-Transient Repetitive Control Strategy for a Three-phase LCL Filter-based Shunt Active Power Filter

  • Zeng, Zheng;Yang, Jia-Qiang;Chen, Shi-Lan;Huang, Jin
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.392-401
    • /
    • 2014
  • A fast-transient repetitive control strategy for a three-phase shunt active power filter is presented in this study to improve dynamic performance without sacrificing steady-state accuracy. The proposed approach requires one-sixth of the fundamental period required by conventional repetitive control methods as the repetitive control time delay in the synchronous reference frames. Therefore, the proposed method allows the system to achieve a fast dynamic response, and the program occupies minimal storage space. A proportional-integral regulator is also added to the current control loop to eliminate arbitrary-order harmonics and ensure system stability under severe harmonic distortion conditions. The design process of the corrector in the fast-transient repetitive controller is also presented in detail. The LCL filter resonance problem is avoided by the appropriately designed corrector, which increases the margin of system stability and maintains the original compensation current tracking accuracy. Finally, experimental results are presented to verify the feasibility of the proposed strategy.