• Title/Summary/Keyword: model reference adaptive fuzzy control

Search Result 87, Processing Time 0.029 seconds

Speed Control of BLDD Motor Using Neural Network based Adaptive Controller (신경 회로망을 이용한 BLDD 모터의 속도 적응 제어기)

  • Kim, Chang-Gyun;Lee, Joong-Hui;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.714-716
    • /
    • 1995
  • This Paper presents a novel and systematic approach to a self-learning controller. The proposed controller is built on a neural network consisting of a standard back propagation (BNN) and approxinate reasoning (AR). The fuzzy inference and knowledge representation are carried out by the neural network structure and computing, instead of logic inference. An architecture similar to that used by traditional model reference adaptive control system (MRAC) is employed.

  • PDF

High Performance Speed Control of SynRM Drive using FNN and NNC (FNN과 NNC를 이용한 SynRM 드라이브의 고성능 속도제어)

  • Kim, Soon-Young;Ko, Jae-Sub;Kang, Seong-Jun;Jang, Mi-Geum;Mun, Ju-Hui;Lee, Jin-Kook;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1113-1114
    • /
    • 2011
  • This paper is proposed design of high performance controller of SynRM drive using FNN and NNC. Also, This paper is proposed of designing fuzzy neural network controller(FNNC) which adopts the fuzzy logic to the artificial neural network(ANN). FNNC combines the capability of fuzzy reasoning in handling uncertain information and the capability of neural network in learning from processes. This controller is controlled speed using FNNC and model reference adaptive fuzzy control(MFC), and estimation of speed using ANN. The performance of proposed controller was demonstrated through response results. The results confirm that the proposed controller is high performance and robust under the variation of load torque and parameters.

  • PDF

Sensorless Vector Control of Induction Motor Compensating the variation of rotor resistance (회전자 저항 변동을 보상한 유도전동기의 센서리스 백터 제어)

  • Park, Chang-Hoon;Kim, Kwang-Yeon;Lee, Taeck-Kie;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.140-143
    • /
    • 1991
  • This paper describes a compensation method for the rotor resistance variation of induction machines in speed sensor-less vector control system using MRAS(model reference adaptive system). In case of rotor resistance variation, the analysis of the conventional speed sensor-less vector control system using MRAS is presented and the compensation method for rotor resistance variation using Fuzzy logic is proposed. In order to confirm the performance of the proposed algorithm, computer simulation is performed.

  • PDF

Sensorless Control of IPMSM with Adaptive-Fuzzy State Observer (적응-퍼지 상태관측기에 의한 IPMSM의 센서리스 제어)

  • Jung Taek-Gi;Lee Jung-Chul;Lee Hong-Gyun;Lee Young-Sil;Chung Dong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.186-189
    • /
    • 2003
  • This paper is proposed to position and speed control of interior permanent magnet synchronous motor(IPMSM) drive without mechanical sensor. A gopinath observer is used for the mechanical state estimation of the motor. The observer was developed based on nonlinear model of IPMSM, that employs a d-q rotating reference frame attached to the rotor, A gopinath observer is implemented to compute the speed and position feedback signal. The validity of the proposed scheme is confirmed by various response characteristics.

  • PDF

EMG Pattern Recognition based on Evidence Accumulation for Prosthesis Control

  • Lee, Seok-Pil;Park, Sand-Hui
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.20-27
    • /
    • 1997
  • We present a method of electromyographic(EMG) pattern recognition to identify motion commands for the control of a prosthetic arm by evidence accumulation with multiple parameters. Integral absolute value, variance, autoregressive(AR) model coefficients, linear cepstrum coefficients, and adaptive cepstrum vector are extracted as feature parameters from several time segments of the EMG signals. Pattern recognition is carried out through the evidence accumulation procedure using the distances measured with reference parameters. A fuzzy mapping function is designed to transform the distances for the application of the evidence accumulation method. Results are presented to support the feasibility of the suggested approach for EMG pattern recognition.

  • PDF

Efficiency Optimization Control of IPMSM Drive using SPI Controller (SPI 제어기를 이용한 IPMSM 드라이브의 효율최적화 제어)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.7
    • /
    • pp.15-25
    • /
    • 2011
  • This proposes an online loss minimization algorithm for series PI(SPI) based interior permanent magnet synchronous motor(IPMSM) drive to yield high efficiency and high dynamic performance over wide speed range. The loss minimization algorithm is developed based on the motor model. In order to minimize the controllable electrical losses of the motor and thereby maximize the operating efficiency, the d-axis armature current is controlled optimally according to the operating speed and load conditions. For vector control purpose, a SPI is used as a speed controller which enables the utilization of the reluctance torque to achieve high dynamic performance as well as to operate the motor over a wide speed range. Also, this paper proposes current control of model reference adaptive fuzzy controller(MFC), and estimation of speed using artificial neural network(ANN) controller. The proposed efficiency optimization control, SPI, MFC, ANN in this paper is applied to IPMSM drive system, the validity of this paper is proved by analyzing response characteristics in variety operating conditions.

Heading Control of Cargo Ship using Model Reference Genetic Adaptive Fuzzy Controller(MRGAFC) (기준 모델 유전 적응 퍼지 제어기를 이용한 화물선의 회두각 제어)

  • Jeong, Jong-Won;Kim, Tae-Woo;Song, Ho-Sin;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2618-2620
    • /
    • 2003
  • 본 연구에서 구현하고자 하는 선박의 회두각 제어의 경우 파도, 바람, 조류 등의 외란의 영향을 많이 받고 있을 뿐만 아니라 그 운동 특성 역시 비선형이므로 적절한 파라미터의 선정과 제어기 구성에 어려움이 따른다. 이의 해결을 위해 K. M. Passino 등에 의해 비선형 특성을 지닌 기준 모델 적응 퍼지 알고리즘을 적용하여 제어기 구성을 시도한바 있고, 국내에서도 김종화 등에 의해 유사한 방법이 시도되어졌다. 본 연구에서는 이상의 시도에서 기준 모델에 의한 제어기 파라미터의 동정의 방법으로 사용한 M.I.T 룰 대신 일반적인 유전 알고리즘에 의해 퍼지 제어기의 파라미터를 동정하고자 한다. 유전 알고리즘에 기반한 기준 모델 적응 퍼지 제어기(MRGAFC) 알고리즘을 제안하며, 이의 검증을 위하여 화물선 회두각의 조향 문제에 이를 적용하여 종래의 방법들과 비교를 수행할 것이다.

  • PDF