• Title/Summary/Keyword: model reference adaptive fuzzy control

Search Result 87, Processing Time 0.027 seconds

Sensorless Speed Control of Permanent Magnet AC Motor using Fuzzy Logic Controller (퍼지 제어기를 이용한 영구 자석 교류 전동기의 센서리스 속도 제어)

  • Choi, Sung-Dae;Ko, Bong-Woon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.524-527
    • /
    • 2003
  • This paper proposes speed control system using a Fuzzy Logic Controller(FLC) in order to realize the speed control of Permanent Magnet AC Motor with no sensor. FLC based MRAS(Model Reference Adaptive System) estimates the speed of Permanent Magnet AC Motor. Using the estimated speed, speed control is performed. The experiment is executed to verify the propriety and the effectiveness of the proposed system.

  • PDF

Design of Learning Fuzzy Controller by the Self-Tuning Algorithm for Equipment Systems (설비시스템을 위한 자기동조기법에 의한 학습 FUZZY 제어기 설계)

  • Lee, Seung
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.6
    • /
    • pp.71-77
    • /
    • 1995
  • This paper deals with design method of learning fuzzy controller for control of an unknown nonlinear plant using the self-tuning algorithm of fuzzy inference rules. In this method the fuzzy identification model obtained that the joined identification model of nonlinear part and linear identification model of linear part by fuzzy inference systems. This fuzzy identification model ordered self-tuning by Decent method so as to be servile to nonlinear plant. A the end, designed learning fuzzy controller of fuzzy identification model have learning structure to model reference adaptive system. The simulation results show that th suggested identification and learning control schemes are practically feasible and effective.

  • PDF

Design of RFNN Controller for high performance Control of SynRM Drive (SynRM 드라이브의 고성능 제어를 위한 RFNN 제어기 설계)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.9
    • /
    • pp.33-43
    • /
    • 2011
  • Since the fuzzy neural network(FNN) is universal approximators, the development of FNN control systems have also grown rapidly to deal with non-linearities and uncertainties. However, the major drawback of the existing FNNs is that their processor is limited to static problems due to their feedforward network structure. This paper proposes the recurrent FNN(RFNN) for high performance and robust control of SynRM. RFNN is applied to speed controller for SynRM drive and model reference adaptive fuzzy controller(MFC) that combine adaptive fuzzy learning controller(AFLC) and fuzzy logic control(FLC), is applied to current controller. Also, this paper proposes speed estimation algorithm using artificial neural network(ANN). The proposed method is analyzed and compared to conventional PI and FNN controller in various operating condition such as parameter variation, steady and transient states etc.

SIMULTANEOUS SPEED AND ROTOR TIME CONSTANT IDENTIFICATION OF AN INDUCTION MOTOR DRIVE BASED ON THE MODEL REFERENCE ADAPTIVE SYSTEM COMBINED WITH A FUZZY RESISTANCE ESTIMATOR

  • Soltani, Jafar;Mizaeian, Behzad
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.11-16
    • /
    • 1998
  • In this paper, simultaneous estimation of rotor speed and time constant for a voltage source inverter (VSI) fed induction motor drive are disccussed. The theory is based on the Model Reference Adaptive System (MRAS). The identifier executes Simultaneous rotor speed and time constant so that vector control of the induction may be achieved in the rotor-flux oriented reference frame. Furthermore, to eliminate the offset error caused by the change in the stator resistance, a fuzzy resistance regulator is also designed which operates in parallel with the rotor speed and time constant identifier

  • PDF

An intelligent Speed Control System for Marine Diesel Engine (선박용 디젤기관의 지능적인 속도제어시스템)

  • 오세준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.320-327
    • /
    • 1998
  • The purpose of this study is to design the intelligent speed control system for marine diesel engine by combining the Model Matching Method and the Nominal Model Tracking Method. Recently for the speed control of a diesel engine some methods using the advanced control techniques such as LQ control Fuzzy control or H$\infty$ control etc. have been reported. However most of speed controllers of a marine diesel engine developed are still using the PID control algorithm But the performance of a marine diesel engine depends highly on the parameter setting of the PID controllers. The authors proposed already a new method to tune efficiently the PID parameters by the Model Mathcing Method typically taking a marine diesel engine as a non-oscillatory second-order system. It was confirmed that the previously proposed method is superior to Ziegler & Nichols's method through simulations under the assumption that the parameters of a diesel engine are exactly known. But actually it is very difficult to find out the exact model of the diesel engine. Therefore when the model and the actual diesel engine are unmatched as an alternative to enhance the speed control characteristics this paper proposes a Model Refernce Adaptive Speed Control system of a diesel engine in which PID control system for the model of a diesel engine is adopted as the nominal model and a Fuzzy controller is adopted as the adaptive controller, And in the nominal model parameters of a diesel engine are adjusted using the Model Matching Method. it is confirmed that the proposed method gives better performance than the case of using only Model Matching Method through the analysis of the characteristics of indicial responses.

  • PDF

Speed Sensorless Control of SPMSM with Adaptive Fuzzy and Observer (적응 퍼지 관측기를 이용한 SPMSM 드라이브의 속도 센서리스제어)

  • Lee, Young-Sil;Lee, Jung-Chul;Lee, Hong-Gyun;Nam, Su-Myeong;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.173-176
    • /
    • 2004
  • This paper is proposed to position and speed control of interior permanent magnet synchronous motor(SPMSM) drive without mechanical sensor. A adaptive fuzzy controller is applied for speed control of SPMSM drive A adaptive state observer is used for the mechanical state estimation of the motor. The observer was developed based on nonlinear model of SPMSM, that employs a d-q rotating reference frame attached to the rotor. A adaptive observer is implemented to compute the speed and position feedback signal. The validity of the proposed sensorless scheme is confirmed by various response characteristics.

  • PDF

A Sensorless Vector Controller for Induction Motors using an Adaptive Fuzzy Logic

  • Huh, Sung-Hoe;Park, Jang-Hyun;Ick Choy;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.162.5-162
    • /
    • 2001
  • This paper presents a indirect vector control system for induction motors using an adaptive fuzzy logic(AFL) speed estimator. The proposed speed estimator is based on the MRAS(Mode Referece Adaptive System) scheme. In general, the MRAS speed estimation approaches are more simple than any other strategies. However, there are some difficulties in the scheme, which are strong sensitivity to the motor parameters variations and necessity to detune the estimator gains caused by different speed area. In this paper, the AFL speed estimator is proposed to solve the problems. The structure of the proposed AFL is very simple. The input of the AFL is the rotor flux error difference between reference and adjustable model, and the output is the estimated incremental rotor speed. Moreover, the back propagation algorithm is combined to adjust the parameters of the fuzzy logic to the most appropriate values during the operating the system. Finally, the validity of the ...

  • PDF

Heading Control of a Cargo Ship using Model Reference Genetic Adaptive Fuzzy Controller(MRGAFC) (기준 모델 유전 적응 퍼지 제어기를 이용한 화물선의 회두각 제어)

  • 정종원;김태우;이준탁
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.279-282
    • /
    • 2003
  • 본 연구에서 구현하고자 하는 선박의 회두각 제어의 경우 파도, 바람, 조류 등의 외란의 영향을 많이 받고 있을 뿐만 아니라 그 운동 특성 역시 비선형이므로 적절한 파라미터의 선정과 제어기 구성에 어려움이 따른다. 이의 해결을 위해 K. M Passino 등에 의해 비선형 특성을 지닌 기준 모델 적응 퍼지 알고리즘을 적용하여 제어기 구성을 시도한바 있고, 국내에서도 김종화 등에 의해 유사한 방법이 시도되어졌다. 본 연구에서는 이상의 시도에서 기준 모델에 의한 제어기 파라미터의 동정의 방법으로 사용한 M.I.T 룰 대신 일반적인 유전 알고리즘에 의해 퍼지 제어기의 파라미터를 동정하고자 한다. 유전 알고리즘에 기반한 기준 모델 적응 퍼지 제어기(MRGAFC: Model Reference Genetic Adaptive Fuzzy Controller) 알고리즘을 제안하며, 이의 검증을 위하여 화물선 회두각의 조향문제에 이를 적용하여 종래의 방법들과 비교를 수행할 것이다.

  • PDF

Design of Intelligent Speed Estimator for Speed Sensorless Control of Induction Motor (유도전동기의 속도 센서리스 제어를 위한 지능형 속도 추정기의 설계)

  • Park, Jin-Su;Choi, Sung-Dae;Kim, Sang-Hoon;Ko, Bong-Woon;Nam, Moon-Hyon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2304-2306
    • /
    • 2004
  • This paper proposes an Intelligent Speed Estimator in order to realize the speed-sensorless vector control of an induction motor. Intelligent Speed Estimator used Model Reference Adaptive System which has Fuzzy-Neural adaptive mechanism as Speed Estimation method. The Intelligent Speed Estimator estimates the speed of an induction motor with a rotor flux of a reference model and adjustable model in MRAS. The Intelligent Speed Estimator reduces the error of the rotor flux between the voltage flux model and the current flux model using the error and the change of error as input of the Estimator. The computer simulation is executed to verify the propriety and the effectiveness of the proposed speed estimator.

  • PDF

Design of Model Following PID Controller Using Fuzzy Tuner (퍼지 동조기법을 이용한 기준모델 추종 PID제어기의 설계)

  • Hong, Hyug-Gi;Moon, Dong-Wook;Kim, Lark-Kyo;Nam, Moon-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.621-623
    • /
    • 1999
  • In this paper, Model following PID control system, which is combined PID controller with Model Reference Adaptive Controller, is proposed. To decrease complex and much calculation which is produced in tuning process, the tuning method of parameter with fuzzy algorithm is introduced. Fuzzy algorithm isn't used in the form of controller generally much used, but tuner. Experimental results show that proposed controller has the PID parameter be tuned by fuzzy algorithm. Therefore, We expect model following PID to be operated in the real-time control.

  • PDF