• Title/Summary/Keyword: model reference adaptive fuzzy control

Search Result 87, Processing Time 0.031 seconds

High Performance of Induction Motor Drive with HAl Controller (HAI 제어기에 의한 유도전동기 드라이브의 고성능 제어)

  • Nam, Su-Myeong;Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.570-572
    • /
    • 2005
  • This paper is proposed adaptive hybrid artificial intelligent(HAI) controller for high performance of induction motor drive. The design of this algorithm based on fuzzy-neural network(FNN) controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

  • PDF

A design of neuro-fuzzy adaptive controller using a reference model following function (기준 모델 추종 기능을 이용한 뉴로-퍼지 적응 제어기 설계)

  • Lee, Young-Seog;Ryoo, Dong-Wan;Seo, Bo-Hyeok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.203-208
    • /
    • 1998
  • This paper presents an adaptive fuzzy controller using an neural network and adaptation algorithm. Reference-model following neuro-fuzzy controller(RMFNFC) is invesgated in order to overcome the difficulty of rule selecting and defects of the membership function in the general fuzzy logic controller(FLC). RMFNFC is developed to tune various parameter of the fuzzy controller which is used for the discrete nonlinear system control. RMFNFC is trained with the identification information and control closed loop error. A closed loop error is used for design criteria of a fuzzy controller which characterizes and quantize the control performance required in the overall control system. A control system is trained up the controller with the variation of the system obtained from the identifier and closed loop error. Numerical examples are presented to control of the discrete nonlinear system. Simulation results show the effectiveness of the proposed controller.

  • PDF

Development and Control of a Small BLDC Motor for Entertainment Robots

  • Lee, Jong-Bae;Park, Chang-Woo;Rhyu, Sae-Hyun;Choi, Jun-Hyuk;Chung, Joong-Ki;Sung, Ha-Gyeong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1500-1505
    • /
    • 2004
  • This paper presents the design and control of a small Brushless DC (BLDC) Motor for entertainment robots. In order to control the developed BLDC motor, Adaptive Fuzzy Control (AFC) scheme via Parallel distributed Compensation(PDC) is developed for the multi- input/multi-output plant model represented by the Takagi-Sugeno(TS) model. The alternative AFC scheme is proposed to provide asymptotic tracking of a reference signal for the systems with uncertain or slowly time-varying parameters. The developed control law and adaptive law guarantee the boundedness of all signals in the closed-loop system. In addition, the plant state tracks the state of the reference model asymptotically with time for any bounded reference input signal. The suggested design technique is applied to the velocity control of a developed small BLDC motor for entertainment robots.

  • PDF

A study on a structure of a model reference adaptive fuzzy controller(MRAFC) (모델 레퍼런스 적응 퍼지 제어기 구조에 관한 연구)

  • Lee, Gi-Bum;Choi, Jong-Soo;Joo, Moon-Gab
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.512-514
    • /
    • 1998
  • The paper presents a model reference adaptive control containing a fuzzy algorithm for tuning the gain coefficient which adjusts the level of the fuzzy controller output. The synthesis of a fuzzy tuning algorithm has been performed for the inverted pendulum system. The computer simulation results have proved the efficiency of the proposed method, showing stable system responses.

  • PDF

Speed Control of Induction Motor Drive using Adaptive FNN Controller (적응 FNN 제어기를 이용한 유도전동기 드라이브의 속도제어)

  • Lee, Hong-Gyun;Lee, Jung-Chul;Lee, Young-Sil;Nam, Su-Myeong;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.143-146
    • /
    • 2004
  • This paper is proposed adaptive fuzzy-neural network(FNN) controller for speed control of induction motor drive. The design of this algorithm based on FNN controller that is implemented using fuzzy control and neural network. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive FNN controller is evaluated by analysis for various operating conditions.

  • PDF

Design of Adaptive FNN Controller for Speed Contort of IPMSM Drive (IPMSM 드라이브의 속도제어를 위한 적응 FNN제어기의 설계)

  • 이정철;이홍균;정동화
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.3
    • /
    • pp.39-46
    • /
    • 2004
  • This paper is proposed adaptive fuzzy-neural network(FNN) controller for the speed control of interior permanent magnet synchronous motor(IPMSM) drive. The design of this algorithm based on FNN controller that is implemented by using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights among the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of analysis prove that the proposed control system has strongly high performance and robustness in parameter variation, steady-state accuracy and transient response.

Torque Control of Brushless DC Motor Using a Clustering Adaptive Fuzzy Logic Controller (클러스터링 적응 퍼지 제어기를 이용한 브러시리스 직류 전동기의 토크 제어)

  • 권정진;한우용;이창구;김성중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.349-349
    • /
    • 2000
  • A Clustering Adaptive Fuzzy Logic Controller(CAFLC) is applied to the torque control of a brushless do motor drive. Objective of this system includes elimination of torque ripple due to cogging at low speeds under loads. The CAFLC implemented has advantages of computational simplicity, and self-tuning characteristics. Simulation results showed that the torque ripple and dynamic response of the system using a CAFLC were superior to the model reference adaptive controlled system.

  • PDF

Adaptive Fuzzy Controller for Speed Control of Servo Motor (서보 전동기 속도 제어를 위한 적응 퍼지 제어기)

  • Son, Jae-Hyun;Roh, Cheung-Min;Kim, Lark-Kyo;Nam, Moon-Hyon
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.947-949
    • /
    • 1995
  • In this paper, model reference adaptive fuzzy controller (MRAFC) was proposed in order to overcome the difficulty of extracting rules and defects of the adaptation performance in the FLC. MRAFC comprised inner feedback loop consisting of the FLC and plant, and outer loop consisting of an adaptation mechanism which is designed for tuning a control rule of the FLC. A reference-model was used for design criteria of a fuzzy controller which characterizes and quantizes the control performance required in the overall control system. Tuning control rules of FLC is performed by the adaptation mechanism. For this, the fuzzy model for tuning the contorl rules is designed in accordance with the feature of error information. And DC servo motor was selected for case study of actual industrial plant and tested on various loads.

  • PDF

Missile Adaptive Control using T-S Fuzzy Model (T-S 퍼지 모델을 이용한 유도탄 적응 제어)

  • 윤한진;박창우;박민용
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.8
    • /
    • pp.771-775
    • /
    • 2001
  • In this paper, in order to control uncertain missile autopilot, an adaptive fuzzy control(AFC) scheme via parallel distributed compensation(PDC) is developed for the multi-input/multi -output plants represented by the Takagi-Sugeno(T-S) fuzzy model. Moreover adaptive law is designed so that the plant output tracks the stable reference model(SRM). From the simulations results, we can conclude that the suggested scheme can effectively solve the control problems of uncertain missile systems based on T-S fuzzy model.

  • PDF

A Study on an Adaptive Model Predictive Control for Nonlinear Processes using Fuzzy Model (퍼지모델을 이용한 비선형 공정의 적응 모델예측제어에 관한 연구)

  • 박종진;우광방
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.97-105
    • /
    • 1996
  • In this paper, an adaptive model predictive controller for nodinear processes using fuzzy model is proposed. Adaptive structure is implemented by recursive fuzzy modeling. The model and control law can be obtained the same as GPC, because the consequent parts of the fuzzy model comprise linear equations of input and output variables. The proposed Adaptive fuzzy model predictive controller (AFMPC) controls nonlinear process well due to the intrinsic nonlinearity of the fuzzy model. When AFMPC's output is variation in the process control input, it maintains zero steady-state offset for a constant reference input and has superior performance. The properties and performance of the proposed control scheme were examined with nonlinear plant by simulation.

  • PDF