• Title/Summary/Keyword: model reference adaptive fuzzy control

Search Result 87, Processing Time 0.024 seconds

A model reference adaptive fuzzy control for MIMO Takagi-Sugeno fuzzy model (MIMO Takagi-Sugeno 퍼지 모델을 위한 모델참조 적응 퍼지 제어기의 설계)

  • Cho, Young-Wan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.1
    • /
    • pp.130-135
    • /
    • 2007
  • In this paper, a direct model reference adaptive fuzzy control (MRAFC) scheme is developed for the plant model whose structure is represented by the MIMO Takagi-Sugeno fuzzy model. The MRAFC scheme is proposed to provide asymptotic tracking of a reference signal lot the systems with uncertain or slowly time-varying parameters. The developed control law and adaptive law guarantee that all signals in the closed-loop system are bounded. In addition, the plant state tracks the state of the reference model asymptotically with time tot any bounded reference input signal.

An Indirect Model Reference Adaptive Fuzzy Control for SISO Takagi-Sugeno Model

  • Cho, Young-Wan;Park, Chang-Woo;Lee, Ki-Chul;Park, Mignon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.32-42
    • /
    • 2001
  • In this paper, a parameter estimator is developed for the plant model whose structure is represented by the Takagi-Sugeno model. The essential idea behind the on-line estimation is the comparison of the measured stated with the state of an estimation model whose structure is the same as that of the parameterized model. Based on the parameter estimation scheme, and indirect Model Reference Adaptive Fuzzy control(MRAFC) scheme is proposed to provide asymptotic tracking of a reference signal for the systems with uncertain for slowly time-varying parameters. The developed control law and adaptive law guarantee the boundedness of all signals in the closed-loop systems. In addition, the plant state tracks the state of the reference model asymptotically with time for any bounded reference input signal.

  • PDF

MRAC Fuzzy Control for High Performance of Induction Motor Drive (유도전동기 드라이브의 고성능 제어를 위한 MRAC 퍼지제어)

  • 정동화;이정철
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.215-223
    • /
    • 2002
  • This paper investigates the adaptive control of a fuzzy logic based speed and flux controller fur a vector controlled induction motor drive. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the model reference adaptive control(MRAC) fuzzy controller is evaluated by simulation for various operating conditions. The validity of the Proposed MRAC fuzzy controller is confirmed by performance results for induction motor drive system.

A Direct Adaptive Fuzzy Control of Nonlinear Systems with Application to Robot Manipulator Tracking Control

  • Cho, Young-Wan;Seo, Ki-Sung;Lee, Hee-Jin
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.6
    • /
    • pp.630-642
    • /
    • 2007
  • In this paper, we propose a direct model reference adaptive fuzzy control (MRAFC) for MIMO nonlinear systems whose structure is represented by the Takagi-Sugeno fuzzy model. The adaptive law of the MRAFC estimates the approximation error of the fuzzy logic system so that it provides asymptotic tracking of the reference signal for the systems with uncertain or slowly time-varying parameters. The developed control law and adaptive law guarantee the boundedness of all signals in the closed-loop system. In addition, the plant state tracks the state of the reference model asymptotically with time for any bounded reference input signal. To verify the validity and effectiveness of the MRAFC scheme, the suggested analysis and design techniques are applied to the tracking control of robot manipulator and simulation studies are carried out. In the control design, the MRAFC is combined with feedforward PD control to make the actual joint trajectories of the robot manipulator with system uncertainties track the desired reference joint position trajectories asymptotically stably.

Adaptive Fuzzy Control of Helicopter (헬리콥터의 적응 퍼지제어)

  • 김종화;장용줄;이원창;강근택
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.144-147
    • /
    • 2001
  • This paper presents adaptive fuzzy controller which is uncertainty or unknown variation in different parameters with nonlinear system of helicopter. The proposed adaptive fuzzy controller applied TSK(Takagi-Sugeno-Kang) fuzzy system which is not only low number of fuzzy rule, and a linear input-output equation with a constant term, but also can represent a large class of nonlinear system with good accuracy. The adaptive law was designed by using Lyapunov stability theory. The adaptive fuzzy controller is a model reference adaptive controller which can adjust the parameter $\theta$ so that the plant output tracks the reference model output. First of all, system of helicopter was considered as stopping state, and design of controller was simulated from dynamics equation with stopping state. Results show that it is controlled more successfully with a model reference adaptive controller than with a non-adaptive fuzzy controller when there is a modelling error between system and model or a continuous added noise in such unstable system.

  • PDF

A Model reference adaptive speed control of marine diesel engine by fusion of PID controller and fuzzy controller

  • Yoo, Heui-Han
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.7
    • /
    • pp.791-799
    • /
    • 2006
  • The aim of this paper is to design an adaptive speed control system of a marine diesel engine by fusion of hard computing based proportional integral derivative (PID) control and soft computing based fuzzy control methods. The model of a marine diesel engine is considered as a typical non oscillatory second order system. When its model and the actual marine diesel engine ate not matched, it is hard to control the speed of the marine diesel engine. Therefore, this paper proposes two methods in order to obtain the speed control characteristics of a marine diesel engine. One is an efficient method to determine the PID control parameters of the nominal model of a marine diesel engine. Second is a reference adaptive speed control method that uses a fuzzy controller and derivative operator for tracking the nominal model of the marine diesel engine. It was found that the proposed PID parameters adjustment method is better than the Ziegler & Nichols' method, and that a model reference adaptive control is superior to using only PID controller. The improved control method proposed here, could be applied to other systems when a model of a system does not match the actual system.

Design of Adaptive Fuzzy Control for High Performance of PMSM Drive (PMSM 드라이브의 고성능 제어를 위한 적응 퍼지제어기의 설계)

  • 정동화;이홍균;이정철
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.2
    • /
    • pp.107-113
    • /
    • 2004
  • This paper develops a adaptive fuzzy controller based fuzzy logic control for high performance of permanent magnet synchronous motor(PMSM) drives. In the proposed system, fuzzy control is used to implement the direct controller as well as the adaptation mechanism. The operation of the direct fuzzy controller and the fuzzy logic based adaptation mechanism is studied. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive fuzzy controller is evaluated by simulation for various operating conditions. The validity of the proposed adaptive fuzzy controller is confirmed by performance results for PMSM drive system.

Speed-Sensorless Control of an Induction Motor using Model Reference Adaptive Fuzzy System (기준 모델 적응 퍼지 시스템을 이용한 유도전동기의 속도 센서리스 제어)

  • Choi, Sung-Dae;Kang, Sung-Ho;Ko, Bong-Woon;Nam, Hoon-Hyon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2064-2066
    • /
    • 2002
  • This paper proposes Model Reference Adaptive Fuzzy System(MRAFS) using Fuzzy Logic Controller(FLC) as a adaptive laws in Model Reference Adaptive System(MRAS) in order to realize the speed-sensorless control of an induction motor. MRAFS estimates the speed of an induction motor with a rotor flux of a reference model and adjustable model in MRAS. Fuzzy logic controller reduces the error of the rotor flux between the reference model and the adjustable model using the error and the change of error as the input of FLC. The computer simulation is executed to verify the propriety and the effectiveness of the proposed system.

  • PDF

Adaptive Fuzzy Speed Controller Design for DC Servo Motor (직류 서보 전동기를 대상으로한 적응퍼지속도제어기의 설계)

  • Ko, Bong-Woon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.994-997
    • /
    • 2003
  • This Paper presents a study of the performance of a DC servo motor with a model reference adaptive fuzzy speed controller (MRAFSC) in the presences of load disturbances. MRAFSC comprised inner feedback loop consisting of the fuzzy logic controller (FLC) and plant, and outer loop consisting of an adaptation mechanism which is designed for tuning a control rule of the FLC. Experimental results show the good performance in the DC servo motor system with the proposed adaptive fuzzy controller.

  • PDF

Adaptive Fuzzy Control for High Performance Speed Control of Induction Motor Drive (유도전동기의 고성능 속도제어를 위한 적응퍼지제어)

  • Lee Hong-Gyun;Lee Jung-Chul;Jung Tack-Gi;Chung Dong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.222-224
    • /
    • 2002
  • This paper investigates the adaptive control of a fuzzy logic based speed and flux controller for a vector controlled induction motor drive. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the model reference adaptive control(mAC) fuzzy controller is evaluated by simulation for various operating conditions. The validity of the proposed MRAC fuzzy controller is confirmed by performance results for induction motor drive system.

  • PDF