• Title/Summary/Keyword: model reduction technique

Search Result 491, Processing Time 0.029 seconds

Fast Noise Reduction Approach in Multifocal Multiphoton Microscopy Based on Monte-Carlo Simulation

  • Kim, Dongmok;Shin, Younghoon;Kwon, Hyuk-Sang
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.421-430
    • /
    • 2021
  • The multifocal multiphoton microscopy (MMM) enables high-speed imaging by the concurrent scanning and detection of multiple foci generated by lenslet array or diffractive optical element. The MMM system mainly suffers from crosstalk generated by scattered emission photons that form ghost images among adjacent channels. The ghost image which is a duplicate of the image acquired in sub-images significantly degrades overall image quality. To eliminate the ghost image, the photon reassignment method was established using maximum likelihood estimation. However, this post-processing method generally takes a longer time than image acquisition. In this regard, we propose a novel strategy for rapid noise reduction in the MMM system based upon Monte-Carlo (MC) simulation. Ballistic signal, scattering signal, and scattering noise of each channel are quantified in terms of photon distribution launched in tissue model based on MC simulation. From the analysis of photon distribution, we successfully eliminated the ghost images in the MMM sub-images. If the priori MC simulation under a certain optical condition is established at once, our simple, but robust post-processing technique will continuously provide the noise-reduced images, while significantly reducing the computational cost.

Performance Evaluation of Multi-Hazard Adaptive Smart Control Technique Based on Connective Control System (연결 제어 시스템 기반의 멀티해저드 적응형 스마트 제어 기술 성능 평가)

  • Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.4
    • /
    • pp.97-104
    • /
    • 2018
  • A connected control method for the adjacent buildings has been studied to reduce dynamic responses. In these studies, seismic loads were generally used as an excitation. Recently, multi-hazards loads including earthquake and strong wind loads are employed to investigate control performance of various control systems. Accordingly, strong wind load as well as earthquake load was adopted to evaluate control performance of adaptive smart coupling control system against multi-hazard. To this end, an artificial seismic load in the region of strong seismicity and an artificial wind load in the region of strong winds were generated for control performance evaluation of the coupling control system. Artificial seismic and wind excitations were made by SIMQKE and Kaimal spectrum based on ASCE 7-10. As example buildings, two 20-story and 12-story adjacent buildings were used. An MR (magnetorheological) damper was used as an adaptive smart control device to connect adjacent two buildings. In oder to present nonlinear dynamic behavior of MR damper, Bouc-Wen model was employed in this study. After parametric studies on MR damper capacity, optimal command voltages for MR damper on each seismic and wind loads were investigated. Based on numerical analyses, it was shown that the adaptive smart coupling control system proposed in this study can provide very good control performance for Multi-hazards.

Relevancy contemplation in medical data analytics and ranking of feature selection algorithms

  • P. Antony Seba;J. V. Bibal Benifa
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.448-461
    • /
    • 2023
  • This article performs a detailed data scrutiny on a chronic kidney disease (CKD) dataset to select efficient instances and relevant features. Data relevancy is investigated using feature extraction, hybrid outlier detection, and handling of missing values. Data instances that do not influence the target are removed using data envelopment analysis to enable reduction of rows. Column reduction is achieved by ranking the attributes through feature selection methodologies, namely, extra-trees classifier, recursive feature elimination, chi-squared test, analysis of variance, and mutual information. These methodologies are ranked via Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) using weight optimization to identify the optimal features for model building from the CKD dataset to facilitate better prediction while diagnosing the severity of the disease. An efficient hybrid ensemble and novel similarity-based classifiers are built using the pruned dataset, and the results are thereafter compared with random forest, AdaBoost, naive Bayes, k-nearest neighbors, and support vector machines. The hybrid ensemble classifier yields a better prediction accuracy of 98.31% for the features selected by extra tree classifier (ETC), which is ranked as the best by TOPSIS.

A conditionally applied neural network algorithm for PAPR reduction without the use of a recovery process

  • Eldaw E. Eldukhri;Mohammed I. Al-Rayif
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.227-237
    • /
    • 2024
  • This study proposes a novel, conditionally applied neural network technique to reduce the overall peak-to-average power ratio (PAPR) of an orthogonal frequency division multiplexing (OFDM) system while maintaining an acceptable bit error rate (BER) level. The main purpose of the proposed scheme is to adjust only those subcarriers whose peaks exceed a given threshold. In this respect, the developed C-ANN algorithm suppresses only the peaks of the targeted subcarriers by slightly shifting the locations of their corresponding frequency samples without affecting their phase orientations. In turn, this achieves a reasonable system performance by sustaining a tolerable BER. For practical reasons and to cover a wide range of application scenarios, the threshold for the subcarrier peaks was chosen to be proportional to the saturation level of the nonlinear power amplifier used to pass the generated OFDM blocks. Consequently, the optimal values of the factor controlling the peak threshold were obtained that satisfy both reasonable PAPR reduction and acceptable BER levels. Furthermore, the proposed system does not require a recovery process at the receiver, thus making the computational process less complex. The simulation results show that the proposed system model performed satisfactorily, attaining both low PAPR and BER for specific application settings using comparatively fewer computations.

An Equalizing Algorithm for Cell-to-Cell Interference Reduction in MLC NAND Flash Memory (MLC NAND 플래시 메모리의 셀 간 간섭현상 감소를 위한 등화기 알고리즘)

  • Kim, Doo-Hwan;Lee, Sang-Jin;Nam, Ki-Hun;Kim, Shi-Ho;Cho, Kyoung-Rok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1095-1102
    • /
    • 2010
  • This paper presents an equalizer reducing CCI(cell-to-cell interference) in MLC NAND flash memory. High growth of the flash memory market has been driven by two combined technological efforts that are an aggressive scaling technique which doubles the memory density every year and the introduction of MLC(multi level cell) technology. Therefore, the CCI is a critical factor which affects occurring data errors in cells. We introduced an equation of CCI model and designed an equalizer reducing CCI based on the proposed equation. In the model, we have been considered the floating gate capacitance coupling effect, the direct field effect, and programming methods of the MLC NAND flash memory. Also we design and verify the proposed equalizer using Matlab. As the simulation result, the error correction ratio of the equalizer shows about 20% under 20nm NAND process where the memory channel model has serious CCI.

Analysis of actively-confined concrete columns using prestressed steel tubes

  • Nematzadeh, Mahdi;Haghinejad, Akbar
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.477-488
    • /
    • 2017
  • In this paper, an innovative technique for finite element (FE) modeling of steel tube-confined concrete (STCC) columns with active confinement under axial compressive loading is presented. In this method, a new constitutive model for the stress-strain relationship of actively-confined concrete is proposed. In total, 14 series of experimental STCC stub columns having active confinement were modeled using the ABAQUS software. The results obtained from the 3D model including the compressive strength at the initial peak point and failure point, as well as the axial and lateral stress-strain curves were compared with the experimental results to verify the accuracy of the 3D model. It was found that there existed a good agreement between them. A parametric study was conducted to investigate the effect of the concrete compressive strength, steel tube wall thickness, and pre-stressing level on the behavior of STCC columns with active confinement. The results indicated that increasing the concrete core's compressive strength leads to an increase in the compressive strength of the active composite column as well as its earlier failure. Furthermore, a reduction in the tube external diameter-to-wall thickness ratio affects the axial stress-strain curve and the confining pressure, while increasing the pre-stressing level has a negligible effect on the two.

A Study on the Application of New Strength Control Model of Concrete Structure using Freiesleben Function (Freiesleben 함수를 이용한 콘크리트구조물의 새로운 강도관리모델 적용에 관한 연구)

  • Kim, Moo-Han;Nam, Jae-Hyun;Kim, Jeong-Il;Khil, Bae-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.135-140
    • /
    • 2003
  • As a construction technique is developed recently, the construction space and construction period are considered to important matters. Especially, in case of construction period, several method is proposed for strength control in the construction field. However there are very little strength control models for application of internal condition. The purpose of this study is to develop a strength control model for application of variety internal condition at construction field. The results are as follows ; 1) According to the results of compressive strength of concrete evaluated by logistic curve and proposed curve, proposed curve is applicable of construction field because there is similar relation with logistic curve. 2) It is shown that the construction period is shortened by reduction of the formwork removal time, because a predicted compressive strength of using the new curve is higher than the proposed compressive strength of standard.

A Study on the Effects of Inverter Ripple Currents to the Proton Exchange Membrane Fuel Cell Stack by Using on Equivalent Impedance Model (양자 교환막형 연료전지의 등가 임피던스 모델을 이용한 인버터에 의한 맥동 전류의 영향에 관한 연구)

  • Choi, Woo-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.6
    • /
    • pp.230-237
    • /
    • 2004
  • In this paper the effects of inverter ripple currents to the Proton Exchange Membrane Fuel Cell Stack (PEMFCS) is analyzed by the impedance model. The proposed method employs the frequency analysis technique to derive an equivalent impedance model of the fuel cell stack and the effects of the inverter ripple current are investigated. The calculated results m then verified by means of experiments on commercially available PEMFCSs. The experimental results show that the ripple current can contribute up to 10[%] reduction in the available output power.

Substitutability of Noise Reduction Algorithm based Conventional Thresholding Technique to U-Net Model for Pancreas Segmentation (이자 분할을 위한 노이즈 제거 알고리즘 기반 기존 임계값 기법 대비 U-Net 모델의 대체 가능성)

  • Sewon Lim;Youngjin Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.663-670
    • /
    • 2023
  • In this study, we aimed to perform a comparative evaluation using quantitative factors between a region-growing based segmentation with noise reduction algorithms and a U-Net based segmentation. Initially, we applied median filter, median modified Wiener filter, and fast non-local means algorithm to computed tomography (CT) images, followed by region-growing based segmentation. Additionally, we trained a U-Net based segmentation model to perform segmentation. Subsequently, to compare and evaluate the segmentation performance of cases with noise reduction algorithms and cases with U-Net, we measured root mean square error (RMSE) and peak signal to noise ratio (PSNR), universal quality image index (UQI), and dice similarity coefficient (DSC). The results showed that using U-Net for segmentation yielded the most improved performance. The values of RMSE, PSNR, UQI, and DSC were measured as 0.063, 72.11, 0.841, and 0.982 respectively, which indicated improvements of 1.97, 1.09, 5.30, and 1.99 times compared to noisy images. In conclusion, U-Net proved to be effective in enhancing segmentation performance compared to noise reduction algorithms in CT images.

Ductile Failure Simulation of Tensile Plates with Multiple Through-Wall Cracks Based on Damage Mechanics (유한요소 손상 해석을 이용한 다중 관통균열 인장시편의 연성 파괴 시뮬레이션)

  • Jeon, Jun-Young;Kim, Nak-Hyun;Oh, Chang-Sik;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.245-252
    • /
    • 2012
  • This paper proposes a simple numerical method, based on the stress-modified fracture strain-damage model with the stress-reduction technique, for predicting the failure behaviors of ductile plates with multiple through-wall cracks. This technique is implemented using the user-defined subroutines provided in ABAQUS. For validation, the results simulated using the proposed method are compared with published experimental data of Japanese researchers.