• Title/Summary/Keyword: model reduction technique

Search Result 491, Processing Time 0.028 seconds

Image site reduction and expansion for multiresolution (다해상도를 위한 영상의 숙소 및 확대 algorithm)

  • Yeum, Sun-Sook;Kim, Jun-Woo;Kim, Min-Gi
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1993 no.11
    • /
    • pp.194-197
    • /
    • 1993
  • A technique for fast image reduction or expansion, in which the reduction(expansion) factor is either any integer or any rational number M/L Is represented. The multiresolution is modeled as an interpolation and filtering followed by a decimation. The model enables frequency domain analysts of the muitiresolution representations as well as convenient design of the Kernels(filters). Using any rin linear phase(Type I) filters a fine to coarse multiresolution structure can be generated.

  • PDF

A Study on the Weight Optimization for the Passenger Car Seat Frame Part (상용승용차 시트프레임 부품의 중량 최적화에 관한 연구)

  • Jang, In-Sik;Min, Byeong-Jo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.155-163
    • /
    • 2006
  • Car seat is one the most important element to make comfortable drivability. It can absorb the impact or vibration during driving state. In addition to those factors, it is needed to have enough strength for passenger safety. From energy efficiency and environmental point of view lighter passenger car seat frame becomes hot issue in the auto industry. In this paper, weight optimization methodology is investigated for commercial car seat frame using CAE. Optimized designs for seat frame are developed using commercially available finite element code(ANSYS) and design of experiment method. At first, car seat frame is modelled using 3-D computer aided design tool(CATIA) and simplified for finite element modelling. Finite element analysis is carried out for the case of FMVSS 202 Head Restraint test to check the strength of the original seat frame. Two base brackets are selected as optimized elements that are the heaviest parts in the seat frame. After finite element analysis for the brackets with similar load condition to the previous test optimization technique is applied for 10% to 50% weight reduction. Design of experiment is utilized to obtain optimization design for the bracket based on the modified 50% weight reduction model in which outer shape of the bracket is conserved. Weight optimization models result in the decrease of the strength in spite of weight reduction. The more design points should be considered to get better optimized model. The more advanced optimization technique may be utilized for more parts of the seat frame to increase whole seat frame characteristics in the future.

Model order reduction for Campbell diagram analysis of shaft-disc-blade system in 3D finite elements

  • Phuor, Ty;Yoon, GilHo
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.411-428
    • /
    • 2022
  • This paper presents the Campbell diagram analysis of the rotordynamic system using the full order model (FOM) and the reduced order model (ROM) techniques to determine the critical speeds, identify the stability and reduce the computational time. Due to the spin-speed-dependent matrices (e.g., centrifugal stiffening matrix), several model order reduction (MOR) techniques may be considered, such as the modal superposition (MS) method and the Krylov subspace-based MOR techniques (e.g., Ritz vector (RV), quasi-static Ritz vector (QSRV), multifrequency quasi-static Ritz vector (MQSRV), multifrequency/ multi-spin-speed quasi-static Ritz vector (MMQSRV) and the combined Ritz vector & modal superposition (RV+MS) methods). The proposed MMQSRV method in this study is extended from the MQSRV method by incorporating the rotational-speed-dependent stiffness matrices into the Krylov subspace during the MOR process. Thus, the objective of this note is to respond to the question of whether to use the MS method or the Krylov subspace-based MOR technique in establishing the Campbell diagram of the shaft-disc-blade assembly systems in three-dimensional (3D) finite element analysis (FEA). The Campbell diagrams produced by the FOM and various MOR methods are presented and discussed thoroughly by computing the norm of relative errors (ER). It is found that the RV and the MS methods are dominant at low and high rotating speeds, respectively. More precisely, as the spinning velocity becomes large, the calculated ER produced by the RV method is significantly increased; in contrast, the ER produced by the MS method is smaller and more consistent. From a computational point of view, the MORs have substantially reduced the time computing considerably compared to the FOM. Additionally, the verification of the 3D FE rotordynamic model is also provided and found to be in close agreement with the existing solutions.

Vibration Analysis of Three Layer Sandwich Beam (3층 샌드위치보의 진동해석)

  • 박철휴;김원철;양보석
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.157-170
    • /
    • 1998
  • This paper proposes a new technique to formulate the finite element model of a sandwich beam by using GHM (Golla-Hughes-McTavish) internal auxiliary coordinates to account for frequency dependence. Through the use of auxiliary coordinates, the equation of motion of undamped mass and stiffness matrix form is extended to encompass viscoelastic damping matrix. However, this methods all suffer from an increase in order of the final finite element model which is undesirable in many applications. Here we propose to combine the GHM method with model reduction techniques to remove the objection of increased model order.

  • PDF

Reduction of Cogging Torque of BLDC Motor by Sinusoidal Air-Gap Flux Density Distribution (BLDC 전동기의 정현적 공극 자속밀도 구현에 의한 코깅 토크 저감)

  • Kim, Samuel;Jeong, Seung-Ho;Rhyu, Se-Hyun;Kwon, Byung-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.57-65
    • /
    • 2007
  • Along with the development of power electronics and magnetic materials, permanent magnet (PM) brushless direct current (BLDC) motors are now widely used in many fields of modern industry BLDC motors have many advantages such as high efficiency, large peak torque, easy control of speed, and reliable working characteristics. However, Compared with the other electric motors without a PM, BLDC motors with a PM have inherent cogging torque. It is often a principle source of vibration, noise and difficulty of control in BLDC motors. Cogging torque which is produced by the interaction of the rotor magnetic flux and angular variation in the stator magnetic reluctance can be reduced by sinusoidal air-gap flux density waveform due to reduction of variation of magnetic reluctance. Therefore, this paper will present a design method of magnetizing system for reduction of cogging torque and low manufacturing cost of BLDC motor with isotropic bonded neodynium-iron-boron (Nd-Fe-B) magnets in ring type by sinusoidal air-gap flux density distribution. An analytical technique of magnetization makes use of two-dimensional finite element method (2-D FEM) and Preisach model that expresses the hysteresis phenomenon of magnetic materials in order for accurate calculation. In addition, For optimum design of magnetizing fixture, Factorial design which is one of the design of experiments (DOE) is used.

A Study Viscous Drag Reduction of Three Dimensional Double Model (3차원 2중 모형의 점성 항력 감소화 연구)

  • 김시영
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.3
    • /
    • pp.209-219
    • /
    • 1994
  • The practical application of riblet to three dimensional double model, for viscous drag reduction, was studied analytically by intergal solution to three dimensional turbulent boundary layers. The case of a V-groove riblet technique on the shear stress and boundary layer velocities were incooperated in the computation of the flow over a smooth slender ship hull. As the results the possible mechanism of turbulent drag reduction by riblets are then suggested based on detailed studies of near-wall turbulence characteristics. And a turbulent boundary layer calculation scheme based on a momentum integral method was modified for the computer program. An example of the calculation results is presented.

  • PDF

Influence of Facing Stiffness on Global Stability of Soil Nailing Systems (전면벽체의 강성이 Soil Nailing 시스템의 전체안정성에 미치는 영향)

  • Kim, Hong-Taek;Kang, In-Kyu;Kwon, Young-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.3
    • /
    • pp.51-60
    • /
    • 2004
  • In Korea there are recently many attempts to expand a temporary soil nailing system into a permanent soil nailing system since the first construction in 1993. In the soil nailing system, the rigid facing walls act on restraining the deformation of the ground. These are purposed to minimize the damage of adjacent buildings or underground structures. In Korea, to minimize the relaxation of the ground, the soil nailing system in the downtown area is often used experientially together with braced cuts, sheet pile walls, soil cement walls (SCW), or jet grouting walls. However, for the conservative design, the confining effects by the stiff facing have been ignored because the proper design approach of considering the facing stiffness has not been proposed. In this study, various laboratory model tests are carried out to examining the influence the rigidity of facings on the global safety of soil nailing system. Also, the parametric studies using the numerical technique as shear-strength reduction technique are carried out. In the parametric study, the thickness of concrete facing walls is changed to identify the effects of the facing wall stiffness.

  • PDF

Uncertainties and control of a 3-DOF active vibration isolation system (3자유도 능동형 제진 시스템의 불확실성과 제어)

  • Kim, Hwa-Soo;Pahk, Heui-Jae;Moon, Jun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.925-933
    • /
    • 2006
  • Using the physics-based model for the vibration isolation system, the model uncertainties are described. With the model including parameter perturbations, the robust controller to meet the robust performance and stability is designed through $\mu$-synthesis by DK-iteration. The order of controller is reduced by virtue of Hankel norm approximation technique to allow the efficient implementation in the real-time experimental environment without any performance degradation. The performance of the reduced $\mu$-controller is accessed in comparison with the original one. The experiments validate the superiority of the proposed control scheme against the model uncertainties and its applicability with varying payload.

  • PDF

A New Distance Measure for a Variable-Sized Acoustic Model Based on MDL Technique

  • Cho, Hoon-Young;Kim, Sang-Hun
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.795-800
    • /
    • 2010
  • Embedding a large vocabulary speech recognition system in mobile devices requires a reduced acoustic model obtained by eliminating redundant model parameters. In conventional optimization methods based on the minimum description length (MDL) criterion, a binary Gaussian tree is built at each state of a hidden Markov model by iteratively finding and merging similar mixture components. An optimal subset of the tree nodes is then selected to generate a downsized acoustic model. To obtain a better binary Gaussian tree by improving the process of finding the most similar Gaussian components, this paper proposes a new distance measure that exploits the difference in likelihood values for cases before and after two components are combined. The mixture weight of Gaussian components is also introduced in the component merging step. Experimental results show that the proposed method outperforms MDL-based optimization using either a Kullback-Leibler (KL) divergence or weighted KL divergence measure. The proposed method could also reduce the acoustic model size by 50% with less than a 1.5% increase in error rate compared to a baseline system.

Uncertainties and Control of a 3-DOF Active Vibration Isolation System (3자유도 능동형 제진 시스템의 불확실성과 제어)

  • Kim, Hwa-Soo;Pahk, Heui-Jae;Cho, Young-Man;Moon, Jun-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1262-1271
    • /
    • 2006
  • Using the physics-based model for the vibration isolation system, the model uncertainties are described. With the model including parameter perturbations, the robust controller to meet the robust performance and stability is designed through $\mu$-synthesis by DK-iteration. The order of controller is reduced by virtue of Hankel norm approximation technique to allow the efficient implementation in the real-time experimental environment without any performance degradation. The performance of the reduced $\mu$-controller is accessed in comparison with the original one. The experiments validate the superiority of the proposed control scheme against the model uncertainties and its applicability with varying payload.