• Title/Summary/Keyword: model predictions

Search Result 2,046, Processing Time 0.026 seconds

Vulnerability Assessment for Fine Particulate Matter (PM2.5) in the Schools of the Seoul Metropolitan Area, Korea: Part I - Predicting Daily PM2.5 Concentrations (인공지능을 이용한 수도권 학교 미세먼지 취약성 평가: Part I - 미세먼지 예측 모델링)

  • Son, Sanghun;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1881-1890
    • /
    • 2021
  • Particulate matter (PM) affects the human, ecosystems, and weather. Motorized vehicles and combustion generate fine particulate matter (PM2.5), which can contain toxic substances and, therefore, requires systematic management. Consequently, it is important to monitor and predict PM2.5 concentrations, especially in large cities with dense populations and infrastructures. This study aimed to predict PM2.5 concentrations in large cities using meteorological and chemical variables as well as satellite-based aerosol optical depth. For PM2.5 concentrations prediction, a random forest (RF) model showing excellent performance in PM concentrations prediction among machine learning models was selected. Based on the performance indicators R2, RMSE, MAE, and MAPE with training accuracies of 0.97, 3.09, 2.18, and 13.31 and testing accuracies of 0.82, 6.03, 4.36, and 25.79 for R2, RMSE, MAE, and MAPE, respectively. The variables used in this study showed high correlation to PM2.5 concentrations. Therefore, we conclude that these variables can be used in a random forest model to generate reliable PM2.5 concentrations predictions, which can then be used to assess the vulnerability of schools to PM2.5.

A Study on Korean Firms' Outward FDIs to China (중국 내 순차적 직접투자와 경영 전략적 특성에 관한 연구)

  • Yim, Hyung-Rok;Chung, Wonjin
    • International Area Studies Review
    • /
    • v.18 no.3
    • /
    • pp.47-66
    • /
    • 2014
  • A noticeable aspect of Korean firms' outward sequential FDIs to China is that they occur sequentially, which means that they implement the outward FDIs to China with a long-term perspective. To analyze the strategic advantages of sequential investment, we introduce Cournot type quantity competition model. According to the model, three important implications are derived. First, sequential FDIs enhances the Korean parents' production capabilities. Second, the parents are more likely to establish new Chinese subsidiaries as they stay longer in China. Third, the production effect of sequential investments incurs more sequential investments. Some regression models are tested for verifying the predictions. According to empirical results, three important results are found. First, initial entry mode affects the size expansion of the Korean parents. Second, the longer the duration of intial subsidiary in China, the more the sequential investment will be. Third, sequential investments are positively associated with the productivity of the Korean parents.

Financial Market Prediction and Improving the Performance Based on Large-scale Exogenous Variables and Deep Neural Networks (대규모 외생 변수 및 Deep Neural Network 기반 금융 시장 예측 및 성능 향상)

  • Cheon, Sung Gil;Lee, Ju Hong;Choi, Bum Ghi;Song, Jae Won
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.26-35
    • /
    • 2020
  • Attempts to predict future stock prices have been studied steadily since the past. However, unlike general time-series data, financial time-series data has various obstacles to making predictions such as non-stationarity, long-term dependence, and non-linearity. In addition, variables of a wide range of data have limitations in the selection by humans, and the model should be able to automatically extract variables well. In this paper, we propose a 'sliding time step normalization' method that can normalize non-stationary data and LSTM autoencoder to compress variables from all variables. and 'moving transfer learning', which divides periods and performs transfer learning. In addition, the experiment shows that the performance is superior when using as many variables as possible through the neural network rather than using only 100 major financial variables and by using 'sliding time step normalization' to normalize the non-stationarity of data in all sections, it is shown to be effective in improving performance. 'moving transfer learning' shows that it is effective in improving the performance in long test intervals by evaluating the performance of the model and performing transfer learning in the test interval for each step.

Prediction of Beach Profile Change Using Machine Learning Technique (머신러닝을 이용한 해빈단면 변화 예측)

  • Shim, Kyu Tae;Cho, Byung Sun;Kim, Kyu Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.639-650
    • /
    • 2022
  • In areas where large-scale sediment transport occurs, it is important to apply appropriate countermeasure method because the phenomenon tends to accelerate by time duration. Among the various countermeasure methods applied so far, beach nourishment needs to be reviewed as an erosion prevention measure because the erosion pattern is mitigated and environmentally friendly depending on the particle size. In the case of beach nourishment. a detailed review is required to determine the size, range, etc., of an appropriate particle diameter. In this study, we investigated the characteristics of the related topographic change using the change in the particle size of nourishment materials, the application of partial area, and the condition under the coexistence of waves and wind as variables because those factors are hard to be analyzed and interpreted within results and limitation of that the existing numerical models are not able to calculate and result out so that it is required that phenomenon or efforts are reviewed at the same time through physical model experiments, field monitoring and etc. So we attempt to reproduce the tendency of beach erosion and deposition and predict possible phenomena in the future using machine learning techniques for phenomena that it is not able to be interpreted by numerical models. we used the hydraulic experiment results for the training data, and the accuracy of the prediction results according to the change in the training method was simultaneously analyzed. As a result of the study it was found that topographic changes using machine learning tended to be similar to those of previous studies in short-term predictions, but we also found differences in the formation of scour and sandbars.

Analysis of public opinion in the 20th presidential election using YouTube data (유튜브 데이터를 활용한 20대 대선 여론분석)

  • Kang, Eunkyung;Yang, Seonuk;Kwon, Jiyoon;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.161-183
    • /
    • 2022
  • Opinion polls have become a powerful means for election campaigns and one of the most important subjects in the media in that they predict the actual election results and influence people's voting behavior. However, the more active the polls, the more often they fail to properly reflect the voters' minds in measuring the effectiveness of election campaigns, such as repeatedly conducting polls on the likelihood of winning or support rather than verifying the pledges and policies of candidates. Even if the poor predictions of the election results of the polls have undermined the authority of the press, people cannot easily let go of their interest in polls because there is no clear alternative to answer the instinctive question of which candidate will ultimately win. In this regard, we attempt to retrospectively grasp public opinion on the 20th presidential election by applying the 'YouTube Analysis' function of Sometrend, which provides an environment for discovering insights through online big data. Through this study, it is confirmed that a result close to the actual public opinion (or opinion poll results) can be easily derived with simple YouTube data results, and a high-performance public opinion prediction model can be built.

Applicability of QSAR Models for Acute Aquatic Toxicity under the Act on Registration, Evaluation, etc. of Chemicals in the Republic of Korea (화평법에 따른 급성 수생독성 예측을 위한 QSAR 모델의 활용 가능성 연구)

  • Kang, Dongjin;Jang, Seok-Won;Lee, Si-Won;Lee, Jae-Hyun;Lee, Sang Hee;Kim, Pilje;Chung, Hyen-Mi;Seong, Chang-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.3
    • /
    • pp.159-166
    • /
    • 2022
  • Background: A quantitative structure-activity relationship (QSAR) model was adopted in the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH, EU) regulations as well as the Act on Registration, Evaluation, etc. of Chemicals (AREC, Republic of Korea). It has been previously used in the registration of chemicals. Objectives: In this study, we investigated the correlation between the predicted data provided by three prediction programs using a QSAR model and actual experimental results (acute fish, daphnia magna toxicity). Through this approach, we aimed to effectively conjecture on the performance and determine the most applicable programs when designating toxic substances through the AREC. Methods: Chemicals that had been registered and evaluated in the Toxic Chemicals Control Act (TCCA, Republic of Korea) were selected for this study. Two prediction programs developed and operated by the U.S. EPA - the Ecological Structure-Activity Relationship (ECOSAR) and Toxicity Estimation Software Tool (T.E.S.T.) models - were utilized along with the TOPKAT (Toxicity Prediction by Komputer Assisted Technology) commercial program. The applicability of these three programs was evaluated according to three parameters: accuracy, sensitivity, and specificity. Results: The prediction analysis on fish and daphnia magna in the three programs showed that the TOPKAT program had better sensitivity than the others. Conclusions: Although the predictive performance of the TOPKAT program when using a single predictive program was found to perform well in toxic substance designation, using a single program involves many restrictions. It is necessary to validate the reliability of predictions by utilizing multiple methods when applying the prediction program to the regulation of chemicals.

Predicting the Number of Confirmed COVID-19 Cases Using Deep Learning Models with Search Term Frequency Data (검색어 빈도 데이터를 반영한 코로나 19 확진자수 예측 딥러닝 모델)

  • Sungwook Jung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.9
    • /
    • pp.387-398
    • /
    • 2023
  • The COVID-19 outbreak has significantly impacted human lifestyles and patterns. It was recommended to avoid face-to-face contact and over-crowded indoor places as much as possible as COVID-19 spreads through air, as well as through droplets or aerosols. Therefore, if a person who has contacted a COVID-19 patient or was at the place where the COVID-19 patient occurred is concerned that he/she may have been infected with COVID-19, it can be fully expected that he/she will search for COVID-19 symptoms on Google. In this study, an exploratory data analysis using deep learning models(DNN & LSTM) was conducted to see if we could predict the number of confirmed COVID-19 cases by summoning Google Trends, which played a major role in surveillance and management of influenza, again and combining it with data on the number of confirmed COVID-19 cases. In particular, search term frequency data used in this study are available publicly and do not invade privacy. When the deep neural network model was applied, Seoul (9.6 million) with the largest population in South Korea and Busan (3.4 million) with the second largest population recorded lower error rates when forecasting including search term frequency data. These analysis results demonstrate that search term frequency data plays an important role in cities with a population above a certain size. We also hope that these predictions can be used as evidentiary materials to decide policies, such as the deregulation or implementation of stronger preventive measures.

Evaluation Model for Lateral Flow on Soft Ground Using Commitee and Probabilistic Neural Network Theory (군집신경망과 확률신경망 이론을 이용한 연약지반의 측방유동 평가 모델)

  • Kim, Young-Sang;Joo, No-Ah;Lee, Jeong-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.7
    • /
    • pp.65-76
    • /
    • 2007
  • Recently, there have been many construction projects on soft ground with growth of industry and various construction problems concerning soft soil behavior also have been reported. Especially, foundation piles of abutments and (or) buildings which were constructed on the soft ground have been suffering from a lot of stability problems of inordinary displacement due to lateral flow of soft ground. Although many researches for this phenomena have been carried out, it is still difficult to assess the mechanism of lateral flow on soft ground quantitatively. And reliable design method for judgement of lateral flow occurrence is not established yet. In this study, PNN (probabilistic neural network) and CNN (committee neural network) theories were applied for judgment of lateral flow occurrence based on eat data compiled from Korea and Japan. Predictions of PNN and CNN models for new data which were not used during model development are compared with those predicted by conventional empirical methods. It was found that the developed PNN and CNN models can predict more precise and reliable judgment of lateral flow occurrence than conventional empirical methods.

Generative Adversarial Network Model for Generating Yard Stowage Situation in Container Terminal (컨테이너 터미널의 야드 장치 상태 생성을 위한 생성적 적대 신경망 모형)

  • Jae-Young Shin;Yeong-Il Kim;Hyun-Jun Cho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.383-384
    • /
    • 2022
  • Following the development of technologies such as digital twin, IoT, and AI after the 4th industrial revolution, decision-making problems are being solved based on high-dimensional data analysis. This has recently been applied to the port logistics sector, and a number of studies on big data analysis, deep learning predictions, and simulations have been conducted on container terminals to improve port productivity. These high-dimensional data analysis techniques generally require a large number of data. However, the global port environment has changed due to the COVID-19 pandemic in 2020. It is not appropriate to apply data before the COVID-19 outbreak to the current port environment, and the data after the outbreak was not sufficiently collected to apply it to data analysis such as deep learning. Therefore, this study intends to present a port data augmentation method for data analysis as one of these problem-solving methods. To this end, we generate the container stowage situation of the yard through a generative adversarial neural network model in terms of container terminal operation, and verify similarity through statistical distribution verification between real and augmented data.

  • PDF

Development and Application of Statistical Programs Based on Data and Artificial Intelligence Prediction Model to Improve Statistical Literacy of Elementary School Students (초등학생의 통계적 소양 신장을 위한 데이터와 인공지능 예측모델 기반의 통계프로그램 개발 및 적용)

  • Kim, Yunha;Chang, Hyewon
    • Communications of Mathematical Education
    • /
    • v.37 no.4
    • /
    • pp.717-736
    • /
    • 2023
  • The purpose of this study is to develop a statistical program using data and artificial intelligence prediction models and apply it to one class in the sixth grade of elementary school to see if it is effective in improving students' statistical literacy. Based on the analysis of problems in today's elementary school statistical education, a total of 15 sessions of the program was developed to encourage elementary students to experience the entire process of statistical problem solving and to make correct predictions by incorporating data, the core in the era of the Fourth Industrial Revolution into AI education. The biggest features of this program are the recognition of the importance of data, which are the key elements of artificial intelligence education, and the collection and analysis activities that take into account context using real-life data provided by public data platforms. In addition, since it consists of activities to predict the future based on data by using engineering tools such as entry and easy statistics, and creating an artificial intelligence prediction model, it is composed of a program focused on the ability to develop communication skills, information processing capabilities, and critical thinking skills. As a result of applying this program, not only did the program positively affect the statistical literacy of elementary school students, but we also observed students' interest, critical inquiry, and mathematical communication in the entire process of statistical problem solving.