• Title/Summary/Keyword: model prediction control

Search Result 965, Processing Time 0.036 seconds

Rice-based breakfast improves fasting glucose and HOMA-IR in Korean adolescents who skip breakfast, but breakfast skipping increases aromatic amino acids associated with diabetes prediction in Korean adolescents who skip breakfast: a randomized, parallel-group, controlled trial

  • Kim, Hyun Suk;Jung, Su-Jin;Jang, Soyoung;Kim, Min Jung;Cha, Youn-Soo
    • Nutrition Research and Practice
    • /
    • v.16 no.4
    • /
    • pp.450-463
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Adolescents who skip breakfast have an increased prevalence of chronic diseases. Thus, we aimed to evaluate whether the intake of rice-based breakfast had positive effects on blood glucose indices and to determine the possibility of diabetes prevalence in Korean youths who habitually skip breakfast. SUBJECTS/METHODS: In this randomized parallel-group controlled trial, 81 subjects who were suitable for compliance among 105 middle-and high-school students aged 12-18 years who usually skipped breakfast were included in this study (rice-meal group [RMG], n = 26; wheat-meal group [WMG], n = 29; general-meal group [GMG], n = 26). The RMG and WMG received a rice-based breakfast and a wheat-based breakfast for 12 weeks, respectively. The anthropometric indices, blood glucose indices, and metabolites were measured at baseline and the endpoint, respectively. RESULTS: The mean body weights in the RMG, WMG, and GMG groups at the endpoint were 62.44 kg, 61.80 kg, and 60.28 kg, respectively, and the mean body weights of the WMG and GMG groups at the endpoint were significantly higher than that at baseline (P < 0.05). The levels of fasting insulin and homeostasis model assessment of insulin resistance (HOMA-IR) values were significantly decreased in the RMG group at the endpoint compared to baseline (P < 0.05, P < 0.05, respectively). The levels of tryptophan and tyrosine in the WMG group at the endpoint were significantly higher than that those at baseline (P < 0.01, P < 0.05, respectively). CONCLUSIONS: Rice-based breakfast has positive effects on fasting insulin levels and HOMA-IR in Korean adolescents who skip breakfast. Additionally, it was found that a skipping breakfast could increase the prevalence of diabetes in adolescents who skip breakfast. Therefore, in addition to reducing breakfast skipping, it is vital to develop a rice-based menu that fits teenage preferences to prevent chronic diseases such as diabetes.

Machine Learning-based landslide susceptibility mapping - Inje area, South Korea

  • Chanul Choi;Le Xuan Hien;Seongcheon Kwon;Giha Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.248-248
    • /
    • 2023
  • In recent years, the number of landslides in Korea has been increasing due to extreme weather events such as localized heavy rainfall and typhoons. Landslides often occur with debris flows, land subsidence, and earthquakes. They cause significant damage to life and property. 64% of Korea's land area is made up of mountains, the government wanted to predict landslides to reduce damage. In response, the Korea Forest Service has established a 'Landslide Information System' to predict the likelihood of landslides. This system selects a total of 13 landslide factors based on past landslide events. Using the LR technique (Logistic Regression) to predict the possibility of a landslide occurrence and the accuracy is known to be 0.75. However, most of the data used for learning in the current system is on landslides that occurred from 2005 to 2011, and it does not reflect recent typhoons or heavy rain. Therefore, in this study, we will apply a total of six machine learning techniques (KNN, LR, SVM, XGB, RF, GNB) to predict the occurrence of landslides based on the data of Inje, Gangwon-do, which was recently produced by the National Institute of Forest. To predict the occurrence of landslides, it is necessary to process converting landslide events and factors data into a suitable form for machine learning techniques through ArcGIS and Python. In addition, there is a large difference in the number of data between areas where landslides occurred or not. Therefore, the prediction was performed after correcting the unbalanced data using Tomek Links and Near Miss techniques. Moreover, to control unbalanced data, a model that reflects soil properties will use to remove absolute safe areas.

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016 (설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.

Implementation of integrated monitoring system for trace and path prediction of infectious disease (전염병의 경로 추적 및 예측을 위한 통합 정보 시스템 구현)

  • Kim, Eungyeong;Lee, Seok;Byun, Young Tae;Lee, Hyuk-Jae;Lee, Taikjin
    • Journal of Internet Computing and Services
    • /
    • v.14 no.5
    • /
    • pp.69-76
    • /
    • 2013
  • The incidence of globally infectious and pathogenic diseases such as H1N1 (swine flu) and Avian Influenza (AI) has recently increased. An infectious disease is a pathogen-caused disease, which can be passed from the infected person to the susceptible host. Pathogens of infectious diseases, which are bacillus, spirochaeta, rickettsia, virus, fungus, and parasite, etc., cause various symptoms such as respiratory disease, gastrointestinal disease, liver disease, and acute febrile illness. They can be spread through various means such as food, water, insect, breathing and contact with other persons. Recently, most countries around the world use a mathematical model to predict and prepare for the spread of infectious diseases. In a modern society, however, infectious diseases are spread in a fast and complicated manner because of rapid development of transportation (both ground and underground). Therefore, we do not have enough time to predict the fast spreading and complicated infectious diseases. Therefore, new system, which can prevent the spread of infectious diseases by predicting its pathway, needs to be developed. In this study, to solve this kind of problem, an integrated monitoring system, which can track and predict the pathway of infectious diseases for its realtime monitoring and control, is developed. This system is implemented based on the conventional mathematical model called by 'Susceptible-Infectious-Recovered (SIR) Model.' The proposed model has characteristics that both inter- and intra-city modes of transportation to express interpersonal contact (i.e., migration flow) are considered. They include the means of transportation such as bus, train, car and airplane. Also, modified real data according to the geographical characteristics of Korea are employed to reflect realistic circumstances of possible disease spreading in Korea. We can predict where and when vaccination needs to be performed by parameters control in this model. The simulation includes several assumptions and scenarios. Using the data of Statistics Korea, five major cities, which are assumed to have the most population migration have been chosen; Seoul, Incheon (Incheon International Airport), Gangneung, Pyeongchang and Wonju. It was assumed that the cities were connected in one network, and infectious disease was spread through denoted transportation methods only. In terms of traffic volume, daily traffic volume was obtained from Korean Statistical Information Service (KOSIS). In addition, the population of each city was acquired from Statistics Korea. Moreover, data on H1N1 (swine flu) were provided by Korea Centers for Disease Control and Prevention, and air transport statistics were obtained from Aeronautical Information Portal System. As mentioned above, daily traffic volume, population statistics, H1N1 (swine flu) and air transport statistics data have been adjusted in consideration of the current conditions in Korea and several realistic assumptions and scenarios. Three scenarios (occurrence of H1N1 in Incheon International Airport, not-vaccinated in all cities and vaccinated in Seoul and Pyeongchang respectively) were simulated, and the number of days taken for the number of the infected to reach its peak and proportion of Infectious (I) were compared. According to the simulation, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days when vaccination was not considered. In terms of the proportion of I, Seoul was the highest while Pyeongchang was the lowest. When they were vaccinated in Seoul, the number of days taken for the number of the infected to reach at its peak was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. When they were vaccinated in Pyeongchang, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. Based on the results above, it has been confirmed that H1N1, upon the first occurrence, is proportionally spread by the traffic volume in each city. Because the infection pathway is different by the traffic volume in each city, therefore, it is possible to come up with a preventive measurement against infectious disease by tracking and predicting its pathway through the analysis of traffic volume.

Analysis of National Stream Drying Phenomena using DrySAT-WFT Model: Focusing on Inflow of Dam and Weir Watersheds in 5 River Basins (DrySAT-WFT 모형을 활용한 전국 하천건천화 분석: 전국 5대강 댐·보 유역의 유입량을 중심으로)

  • LEE, Yong-Gwan;JUNG, Chung-Gil;KIM, Won-Jin;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.2
    • /
    • pp.53-69
    • /
    • 2020
  • The increase of the impermeable area due to industrialization and urban development distorts the hydrological circulation system and cause serious stream drying phenomena. In order to manage this, it is necessary to develop a technology for impact assessment of stream drying phenomena, which enables quantitative evaluation and prediction. In this study, the cause of streamflow reduction was assessed for dam and weir watersheds in the five major river basins of South Korea by using distributed hydrological model DrySAT-WFT (Drying Stream Assessment Tool and Water Flow Tracking) and GIS time series data. For the modeling, the 5 influencing factors of stream drying phenomena (soil erosion, forest growth, road-river disconnection, groundwater use, urban development) were selected and prepared as GIS-based time series spatial data from 1976 to 2015. The DrySAT-WFT was calibrated and validated from 2005 to 2015 at 8 multipurpose dam watershed (Chungju, Soyang, Andong, Imha, Hapcheon, Seomjin river, Juam, and Yongdam) and 4 gauging stations (Osucheon, Mihocheon, Maruek, and Chogang) respectively. The calibration results showed that the coefficient of determination (R2) was 0.76 in average (0.66 to 0.84) and the Nash-Sutcliffe model efficiency was 0.62 in average (0.52 to 0.72). Based on the 2010s (2006~2015) weather condition for the whole period, the streamflow impact was estimated by applying GIS data for each decade (1980s: 1976~1985, 1990s: 1986~1995, 2000s: 1996~2005, 2010s: 2006~2015). The results showed that the 2010s averaged-wet streamflow (Q95) showed decrease of 4.1~6.3%, the 2010s averaged-normal streamflow (Q185) showed decreased of 6.7~9.1% and the 2010s averaged-drought streamflow (Q355) showed decrease of 8.4~10.4% compared to 1980s streamflows respectively on the whole. During 1975~2015, the increase of groundwater use covered 40.5% contribution and the next was forest growth with 29.0% contribution among the 5 influencing factors.

Prediction of infectious diseases using multiple web data and LSTM (다중 웹 데이터와 LSTM을 사용한 전염병 예측)

  • Kim, Yeongha;Kim, Inhwan;Jang, Beakcheol
    • Journal of Internet Computing and Services
    • /
    • v.21 no.5
    • /
    • pp.139-148
    • /
    • 2020
  • Infectious diseases have long plagued mankind, and predicting and preventing them has been a big challenge for mankind. For this reasen, various studies have been conducted so far to predict infectious diseases. Most of the early studies relied on epidemiological data from the Centers for Disease Control and Prevention (CDC), and the problem was that the data provided by the CDC was updated only once a week, making it difficult to predict the number of real-time disease outbreaks. However, with the emergence of various Internet media due to the recent development of IT technology, studies have been conducted to predict the occurrence of infectious diseases through web data, and most of the studies we have researched have been using single Web data to predict diseases. However, disease forecasting through a single Web data has the disadvantage of having difficulty collecting large amounts of learning data and making accurate predictions through models for recent outbreaks such as "COVID-19". Thus, we would like to demonstrate through experiments that models that use multiple Web data to predict the occurrence of infectious diseases through LSTM models are more accurate than those that use single Web data and suggest models suitable for predicting infectious diseases. In this experiment, we predicted the occurrence of "Malaria" and "Epidemic-parotitis" using a single web data model and the model we propose. A total of 104 weeks of NEWS, SNS, and search query data were collected, of which 75 weeks were used as learning data and 29 weeks were used as verification data. In the experiment we predicted verification data using our proposed model and single web data, Pearson correlation coefficient for the predicted results of our proposed model showed the highest similarity at 0.94, 0.86, and RMSE was also the lowest at 0.19, 0.07.

Estimation on Heating and Cooling Loads for a Multi-Span Greenhouse and Performance Analysis of PV System using Building Energy Simulation (BES를 이용한 연동형 온실의 냉·난방 부하 산정 및 PV 시스템 발전 성능 분석)

  • Lee, Minhyung;Lee, In-Bok;Ha, Tae-Hwan;Kim, Rack-Woo;Yeo, Uk-Hyeon;Lee, Sang-Yeon;Park, Gwanyong;Kim, Jun-Gyu
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.258-267
    • /
    • 2017
  • The price competitiveness of photovoltaic system (PV system) has risen recently due to the growth of industries, however, it is rarely applied to the greenhouse compared to other renewable energy. In order to evaluate the application of PV system in the greenhouse, power generation and optimal installation area of PV panels should be analyzed. For this purpose, the prediction of the heating and cooling loads of the greenhouse is necessary at first. Therefore, periodic and maximum energy loads of a multi-span greenhouse were estimated using Building Energy Simulation(BES) and optimal installation area of PV panels was derived in this study. 5 parameter equivalent circuit model was applied to analyzed power generation of PV system under different installation angle and the optimal installation condition of the PV system was derived. As a result of the energy simulation, the average cooling load and heating load of the greenhouse were 627,516MJ and 1,652,050MJ respectively when the ventilation rate was $60AE{\cdot}hr^{-1}$. The highest electric power production of the PV system was generated when the installation angle was set to $30^{\circ}$. Also, adjustable PV system produced about 6% more electric power than the fixed PV system. Optimal installation area of the PV panels was derived with consideration of the estimated energy loads. As a result, optimal installation area of PV panels for fixed PV system and adjustable PV system were $521m^2$ and $494m^2$ respectively.

A Dynamic Allocation Scheme for Improving Memory Utilization in Xen (Xen에서 메모리 이용률 향상을 위한 동적 할당 기법)

  • Lee, Kwon-Yong;Park, Sung-Yong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.3
    • /
    • pp.147-160
    • /
    • 2010
  • The system virtualization shows interest in the consolidation of servers for the efficient utilization of system resources. There are many various researches to utilize a server machine more efficiently through the system virtualization technique, and improve performance of the virtualization software. These researches have studied with the activity to control the resource allocation of virtual machines dynamically focused on CPU, or to manage resources in the cross-machine using the migration. However, the researches of the memory management have been wholly lacking. In this respect, the use of memory is limited to allocate the memory statically to virtual machine in server consolidation. Unfortunately, the static allocation of the memory causes a great quantity of the idle memory and decreases the memory utilization. The underutilization of the memory makes other side effects such as the load of other system resources or the performance degradation of services in virtual machines. In this paper, we suggest the dynamic allocation of the memory in Xen to control the memory allocation of virtual machines for the utilization without the performance degradation. Using AR model for the prediction of the memory usage and ACO (Ant Colony Optimization) algorithm for optimizing the memory utilization, the system operates more virtual machines without the performance degradation of servers. Accordingly, we have obtained 1.4 times better utilization than the static allocation.

Study of the Construction of a Coastal Disaster Prevention System using Deep Learning (딥러닝을 이용한 연안방재 시스템 구축에 관한 연구)

  • Kim, Yeon-Joong;Kim, Tae-Woo;Yoon, Jong-Sung;Kim, Myong-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.590-596
    • /
    • 2019
  • Numerous deaths and substantial property damage have occurred recently due to frequent disasters of the highest intensity according to the abnormal climate, which is caused by various problems, such as global warming, all over the world. Such large-scale disasters have become an international issue and have made people aware of the disasters so they can implement disaster-prevention measures. Extensive information on disaster prevention actively has been announced publicly to support the natural disaster reduction measures throughout the world. In Japan, diverse developmental studies on disaster prevention systems, which support hazard map development and flood control activity, have been conducted vigorously to estimate external forces according to design frequencies as well as expected maximum frequencies from a variety of areas, such as rivers, coasts, and ports based on broad disaster prevention data obtained from several huge disasters. However, the current reduction measures alone are not sufficiently effective due to the change of the paradigms of the current disasters. Therefore, in order to obtain the synergy effect of reduction measures, a study of the establishment of an integrated system is required to improve the various disaster prevention technologies and the current disaster prevention system. In order to develop a similar typhoon search system and establish a disaster prevention infrastructure, in this study, techniques will be developed that can be used to forecast typhoons before they strike by using artificial intelligence (AI) technology and offer primary disaster prevention information according to the direction of the typhoon. The main function of this model is to predict the most similar typhoon among the existing typhoons by utilizing the major typhoon information, such as course, central pressure, and speed, before the typhoon directly impacts South Korea. This model is equipped with a combination of AI and DNN forecasts of typhoons that change from moment to moment in order to efficiently forecast a current typhoon based on similar typhoons in the past. Thus, the result of a similar typhoon search showed that the quality of prediction was higher with the grid size of one degree rather than two degrees in latitude and longitude.

A Comparison of Accuracy of the Ocean Thermal Environments Using the Daily Analysis Data of the KMA NEMO/NEMOVAR and the US Navy HYCOM/NCODA (기상청 전지구 해양순환예측시스템(NEMO/NEMOVAR)과 미해군 해양자료 동화시스템(HYCOM/NCODA)의 해양 일분석장 열적환경 정확도 비교)

  • Ko, Eun Byeol;Moon, Il-Ju;Jeong, Yeong Yun;Chang, Pil-Hun
    • Atmosphere
    • /
    • v.28 no.1
    • /
    • pp.99-112
    • /
    • 2018
  • In this study, the accuracy of ocean analysis data, which are produced from the Korea Meteorological Administration (KMA) Nucleus for European Modelling of the Ocean/Variational Data Assimilation (NEMO/NEMOVAR, hereafter NEMO) system and the HYbrid Coordinate Ocean Model/Navy Coupled Ocean Data Assimilation (HYCOM/NCODA, hereafter HYCOM) system, was evaluated using various oceanic observation data from March 2015 to February 2016. The evaluation was made for oceanic thermal environments in the tropical Pacific, the western North Pacific, and the Korean peninsula. NEMO generally outperformed HYCOM in the three regions. Particularly, in the tropical Pacific, the RMSEs (Root Mean Square Errors) of NEMO for both the sea surface temperature and vertical water temperature profile were about 50% smaller than those of HYCOM. In the western North Pacific, in which the observational data were not used for data assimilation, the RMSE of NEMO profiles up to 1000 m ($0.49^{\circ}C$) was much lower than that of HYCOM ($0.73^{\circ}C$). Around the Korean peninsula, the difference in RMSE between the two models was small (NEMO, $0.61^{\circ}C$; HYCOM, $0.72^{\circ}C$), in which their errors show relatively big in the winter and small in the summer. The differences reported here in the accuracy between NEMO and HYCOM for the thermal environments may be attributed to horizontal and vertical resolutions of the models, vertical coordinate and mixing scheme, data quality control system, data used for data assimilation, and atmosphere forcing. The present results can be used as a basic data to evaluate the accuracy of NEMO, before it becomes the operational model of the KMA providing real-time ocean analysis and prediction data.