• Title/Summary/Keyword: model plant

Search Result 4,014, Processing Time 0.042 seconds

LC/MS-based metabolomics approach for selection of chemical markers by domestic production region of Schisandra chinensis (오미자(Schisandra chinensis)의 국내 산지별 화학적마커 선정을 위한 LC/MS 기반의 대사체학 접근법)

  • In Seon Kim;Seon Min Oh;Ha Eun Song;Doo-Young Kim;Dahye Yoon;Dae Young Lee;Hyung Won Ryu
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.467-476
    • /
    • 2023
  • Schisandra chinensis (S. chinensis) is a deciduous broad-leaved cave plant belonging to the Schisandraceae family and is widely distributed in East Asia including Korea, Japan, China, and Taiwan. It has been reported that the main components contained in S. chinensis include lignan compounds and triterpenoid compounds. To distinguish the characteristics of S. chinensis by production region of Korea, a discriminant was established by performing metabolite profiling and principal component analysis, a multivariate statistical analysis technique. As a result, 16 types of triterpenoids, 9 types of lignan, and 1 type each of flavonoid, phenylpropanoid, and fatty acid were identified. In addition, through multivariate statistical analysis, it was confirmed that the four groups in Danyang, Moongyeong, Geochang, and Pyeongchang were divided, by applying the s-plot model of orthogonal partial least squares discriminant analysis. Biomarkers were identified: lanostane, cycloartane, schiartane triterpenoid, and dibenzocyclo-octadiene lignan were identified as chemical markers, respectively.

Chemical Factors of Soil Associated with the Prediction Model for Fertilizer Need of N and K in Flooded Rice based on the Multinutrient Factor Balance Concept (다요인조절개념하(多要因調節槪念下)에서의 수도(水稻) N. K 시비적량여측(施肥適量予測) 모형식(模型式)에 관여(關與)하는 토양화학적(土壤化學的) 요인(要因))

  • Park, Chon-Suh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.3
    • /
    • pp.210-222
    • /
    • 1983
  • The chemical factors of topsoil, which are associated with the prediction models of urea nitrogen (N kg/ha) need under the concept of multinutrient factor balance in soil to maintain optimum nutrient balance in rice plant grown in flooded condition, were the x/z and the Kas/Kai values. In the prediction model or equation $NRe=(58.5+0.647x/z){\cdot}F$, the F was difined as the productivity factor, which was considered to be dependent on the variety, climate and soil, and found to be better estimated as the function of Kas/Kai rather than x/z from the equation Fb=0.65+1.086kas/kai, where the x, z, Kas and Kai, respectively, were available $SiO_2$ ppm, % organic matter, K activity ratio or exchangeable $K^+/(\sqrt{Ca+Mg}+Na^+)$ in topsoil and the ideal K activity ratio determined by the equation Kai=0.03+0.00083x/z for standard variety Jinheung. The relative K activity ratio or Kas/kai in topsoil, which have to be equal to 1.0 in the prediction of K fertilizer need for standard Japonica Variety Jinheung, found to be 1.63 for the varieties of Indica ${\times}$ Japonica or Milyang No. 23 grown in Korean condition and 0.322 for the Indica varieties of IR 8, 20, 36 and 42 gown in the Philippines condition. The ideal K activity rations for different Varieties such as Indies ${\times}$ Japonica grown in Korea or $Kai_1$ and Indica grown in the Philippines or $Kai_2$ were computed to be estimated from the following equations respectively ; $\\Kai_1=0.0489+0.001353X/Z\\Kai_2=0.01+0.000267X/Z$.

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016 (설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.

Estimation of Development Rate and Heading Time of Various Rice Varieties as affected Air Temperature and Day Length (기온(氣溫)과 일장조건(日長條件)에 따른 벼 품종별(品種別) 발육속도(發育速度) 및 출수기(出穗期) 추정(推定))

  • Lee, Jeong-Taek;Kim, Dal-Ung;Yun, Seong-Ho;Im, Jung-Nam
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.3
    • /
    • pp.251-261
    • /
    • 1994
  • This study was conducted to get some basic information about rice plant development rate and heading ecology in various climatic conditions, growing nine varieties at three locations, Jinbu as the mountainous cool area, Suweon and Iri as the plain area for two years from 1987 to 1988. Average daily air temperature and day length from transplanting to heading date were analyzed in relation to the heading. Heading date and development rate of each variety were estimated by the Symplex method and the fitness of the model was evaluated. The results obtained as follows: Average daily air temperatures among varieties during the period from transplanting to heading ranged from 18 to $19^{\circ}C$ in Jinbu, from 22.5 to $23.5^{\circ}C$ in Suweon, and from 23.5 to $24.5^{\circ}C$ in Iri, the late-maturing varieties requiring the higher temperatures. The average heading days were about 20 days longer in Jinbu and $3{\sim}5$ days shorter in Iri than those in Suweon in all varieties. Little differences in accumulated temperature from transplanting to heading were observed in regions and years, and also among varieties. Developmental stages could be expressed as the accumulation of daily development rate and the predicted heading dates by the Symplex method were similar to the observed ones. The development rate of each variety varies with air temperatures. The early maturing Japonica types including the Unbong variety were fast in development rate at lower temperatures, but the late-maturing varieties of the Japonica type were late. A model to predict the heading dates of rice varieties by the Symplex method using air temperatures and day lengths was feasible.

  • PDF

Optimization of Betacyanin Production by Red Beet (Beta vulgaris L.) Hairy Root Cultures. (Red Beet의 모상근 배양을 이용한 천연색소인 Betacyanin 생산의 최적화)

  • Kim, Sun-Hee;Kim, Sung-Hoon;Lee, Jo-No;An, Sang-Wook;Kim, Kwang-Soo;Hwnag, Baik;Lee, Hyeong-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.5
    • /
    • pp.435-441
    • /
    • 1998
  • Optimal conditions for the production of natural color, betacyanin were investigated by varying light intensity, C/N ratio, concentrations of phosphate and kinds of elicitors. Batch cultivation was employed to characterize cell growth and betacyanin production of 32 days. The maximum specific growth rate, ${\mu}$$\sub$max/, was 0.3 (1/day) for batch cultivation. The maximum specific production rate, q$\^$max/$\sub$p/, was enhanced 0.11 (mg/g-cell/day) at 3 klux. A light intensity of 3 klux was shown to the best for both cell growth and betacyanin production. The maximum specific production rate was 0.125 (mg/g-cell/day) at 0.242 (1/day), the maximum specific growth rate. The dependence of specific growth rate on the light lintensity is fit to the photoinhibition model. The correlation between ${\mu}$ and q$\sub$p/ showed that the product formation parameters, ${\alpha}$ and ${\beta}$$\sub$p/ were 0.3756 (mg/cell) and 0.001 (mg/g-cell/day), respectively. The betacyanin production was partially cell growth related process, which is different from the production of a typical product in plant cell cultures. In C/N ratio experiment, high carbon concentration, 42.1 (w/w) improved cell growth rate while lower concentration, 31.6 (w/w) increased the betacyanin production rate. The ${\mu}$$\sub$max/ and q$\^$max/$\sub$p/ were 0.26 (1/day) and 0.075 (mg/g-cell/day), respectively. Beta vulgaris L. cells under 1.25 mM phosphate concentration produced 10.15 mg/L betacyanin with 13.46 (g-dry wt./L) of maximum cell density. The production of betacyanin was elongated by adding 0.1 ${\mu}$M of kinetin. This also increased the cell growth. Optimum culture conditions of light intensity, C/N, phosphate concentration were obtained as 5.5 klux, 27 (w/w), 1.25 mM, respectively by the response surface methodology. The maximum cell density, X$\sub$max/, and maximum production, P$\sub$max/, in optimized conditions were 16 (g-dry wt./L), 12.5 (mg/L) which were higher than 8 (g-dry wt./L), 4.48 (mg/L) in normal conditions. The ${\mu}$$\sub$max/ and q$\^$max/$\sub$p/ were 0.376 (1/day) and 0.134 (mg/g-cell/day) at the optimal condition. The overall results may be useful in scaling up hairy root cell culture system for commercial production of betacyanin.

  • PDF

Anti-Oxidant, Anti-Melanogenic, and Anti-Inflammatory Activities of Zanthoxylum schinifolium Extract and its Solvent Fractions (산초 추출물 및 분획물의 항산화, 미백 및 항염증 활성)

  • Jin, Kyong-Suk;Oh, You Na;Park, Jung Ae;Lee, Ji Young;Jin, Soojung;Hyun, Sook Kyung;Hwang, Hye Jin;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.4
    • /
    • pp.371-379
    • /
    • 2012
  • This study was designed to explore new nutraceutical and cosmetic resources possessing biological activities from the plant kingdom. To fulfill this purpose, we analyzed the anti-oxidative, anti-melanogenic, and anti-inflammatory activities of Zanthoxylum schinifolium extract (ZSE) and its solvent fractions using in vitro assays and cell culture model systems. Three kinds of ZSE treated with methanol, ethanol, and water exhibited potent anti-oxidative activities through DPPH radical scavenging capacity, and inhibited in vitro DOPA oxidation. Furthermore, Z. schinifolium methanol extract (ZSME) inhibited the ${\alpha}$-melanocyte stimulating hormone, which induces melanin contents in B16F10 cells. Its anti-melanogenic activity originates from the inhibition of tyrosinase enzyme activity and melanogenesis related protein expression. Moreover, lipopolysaccharide induced nitric oxide production in the RAW 264.7 cell line was also ameliorated by ZSME treatment in a dose dependent manner. Among the four solvent fractions of ZSME treated with dichloromethane, ethyl acetate, n-butanol, and water, three fractions, except water, showed significant anti-melanogenic and anti-inflammatory activities. Taken together, these results provide important new insights into Z. schinifolium, indicating that it possesses numerous biological activities such as anti-oxidative, anti-melanogenic, and anti-inflammatory activities. Therefore, it may well serve as a promising material in the field of nutraceuticals and cosmetics.

Carbon Storage and Uptake by Deciduous Tree Species for Urban Landscape (도시 낙엽성 조경수종의 탄소저장 및 흡수)

  • Jo, Hyun-Kil;Ahn, Tae-Won
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.5
    • /
    • pp.160-168
    • /
    • 2012
  • This study generated regression models to estimate the carbon storage and uptake from the urban deciduous landscape trees through a direct harvesting method, and established essential information to quantify carbon reduction from urban greenspace. Tree species for the study included Acer palmatum, Zelkova serrata, Prunus yedoensis, and Ginkgo biloba, which are usually planted as urban landscape trees. Tree individuals for each species were sampled reflecting various diameter sizes at a given interval. The study measured biomass for each part including the roots of sample trees to compute the total carbon storage per tree. Annual carbon uptake per tree was quantified by analyzing radial growth rates of stem samples at breast height. The study then derived a regression model easily applicable in estimating carbon storage and uptake per tree for the 4 species by using diameter at breast height(dbh) as an independent variable. All the regression models showed high fitness with $r^2$ values of 0.94~0.99. Carbon storage and uptake per tree and their differences between diameter classes increased as the diameter sizes got larger. The carbon storage and uptake tended to be greatest with Zelkova serrata in the same diameter sizes, followed by Prunus yedoensis and Ginkgo biloba in order. A Zelkova serrata tree with 15cm in dbh stored about 54kg of carbon and annually sequestered 7 kg, based on a regression model for the species. The study has broken new grounds to overcome limitations of the past studies which substituted, due to a difficulty in direct cutting and root digging of urban landscape trees, coefficients from the forest trees such as biomass expansion factors, ratios of below ground/above ground biomass, and diameter growth rates. Study results can be useful as a tool or skill to evaluate carbon reduction by landscape trees in urban greenspace projects of the government.

Restoration for Evergreen Broad-leaved Forests by Successional Trends of Pasture-grassland in the Seonheulgot, Jeju-do (제주도 선흘곶 초지지역의 천이경향을 고려한 상록활엽수림 복원 연구)

  • Han Bong-Ho;Kim Jeong-Ho;Bae Jeong-Hee
    • Korean Journal of Environment and Ecology
    • /
    • v.18 no.4
    • /
    • pp.369-381
    • /
    • 2004
  • This study was achieved to present the way to restore the Seonheulgot pasture-grassland damaged by landuse and interference for a long time to evergreen broad-leaved forests as the native vegetation structure. As a result of analyzing ecological succession tendency of structure in survey area, we established the optimal restoration model. The total of survey sites were 26, and the classified plant community types were four types by M.I.P of dominant woody species. Finally we classified the four types based on diameter of dominant woody species in canopy layer. The six community types are as follows: Community I was runner-shrub forest, community II was evergreen broad-leaved shrub forest, and community III was evergreen broad-leaved forest of small diameter. Community IV and V were evergreen broad-leaved forest of middle diameter. Community Ⅵ was evergreen broad-leaved forest of large diameter. The number of constituent species was 24 in community I, 28 in community II as the shrub forest, 16 as the evergreen broad-leaved forest of small diameter, 29 in community III, 30 in community IV as the evergreen broad-leaved forest of middle diameter and 27 in community Ⅵ as the evergreen broad-leaved forest of large diameter. The range of Shannon's index of all communitys was from 0.8763 to 1.2630 and the Similarity index between the community composed of middle diameter woody species and large diameter woody species. The ecological succession of community I, II, and III were changed from pasture-grassland to broad-leaved forest and the structure of community IV, V, and Ⅵ was similar to evergreen broad-leaved forest in warm temperate region. We suggest the restoration planting model evergreen broad-leaved forest of in Seonheulgot pasture-grassland, as follows: The target restoration vegetation were Castanopsis cuspidata var. sievoldii community and Queycus glauca community. Castanopsis cuspidata var. sievoldii and Quercus glauca should be dominant woody species in canopy layer, the number of trees was 10 per 100$m^2$, and Castanopsis cuspidata var, sievoldii, Quercus glauca, Camellia japonica, and Eurya japonica should be dominant woody species in the understory layer, the number of trees was 14 per 100$m^2$.

Perspective of breaking stagnation of soybean yield under monsoon climate

  • Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.8-9
    • /
    • 2017
  • Soybean yield has been low and unstable in Japan and other areas in East Asia, despite long history of cultivation. This is contrasting with consistent increase of yield in North and South America. This presentation tries to describe perspective of breaking stagnation of soybean yield in East Asia, considering the factors of the different yields between regions. Large amount of rainfall with occasional dry-spell in the summer is a nature of monsoon climate and as frequently stated excess water is the factor of low and unstable soybean yield. For example, there exists a great deal of field-to-field variation in yield of 'Tanbaguro' soybean, which is reputed for high market value and thus cultivated intensively and this results in low average yield. According to our field survey, a major portion of yield variation occurs in early growth period. Soybean production on drained paddy fields is also vulnerable to drought stress after flowering. An analysis at the above study site demonstrated a substantial field-to-field variation of canopy transpiration activity in the mid-summer, but the variation of pod-set was not as large as that of early growth. As frequently mentioned by the contest winners of good practice farming, avoidance of excess water problem in the early growth period is of greatest importance. A series of technological development took place in Japan in crop management for stable crop establishment and growth, that includes seed-bed preparation with ridge and/or chisel ploughing, adjustment of seed moisture content, seed treatment with mancozeb+metalaxyl and the water table control system, FOEAS. A unique success is seen in the tidal swamp area in South Sumatra with the Saturated Soil Culture (SSC), which is for managing acidity problem of pyrite soils. In 2016, an average yield of $2.4tha^{-1}$ was recorded for a 450 ha area with SSC (Ghulamahdi 2017, personal communication). This is a sort of raised bed culture and thus the moisture condition is kept markedly stable during growth period. For genetic control, too, many attempts are on-going for better emergence and plant growth after emergence under excess water. There seems to exist two aspects of excess water resistance, one related to phytophthora resistance and the other with better growth under excess water. The improvement for the latter is particularly challenging and genomic approach is expected to be effectively utilized. The crop model simulation would estimate/evaluate the impact of environmental and genetic factors. But comprehensive crop models for soybean are mainly for cultivations on upland fields and crop response to excess water is not fully accounted for. A soybean model for production on drained paddy fields under monsoon climate is demanded to coordinate technological development under changing climate. We recently recognized that the yield potential of recent US cultivars is greater than that of Japanese cultivars and this also may be responsible for different yield trends. Cultivar comparisons proved that higher yields are associated with greater biomass production specifically during early seed filling, in which high and well sustained activity of leaf gas exchange is related. In fact, the leaf stomatal conductance is considered to have been improved during last a couple of decades in the USA through selections for high yield in several crop species. It is suspected that priority to product quality of soybean as food crop, especially large seed size in Japan, did not allow efficient improvement of productivity. We also recently found a substantial variation of yielding performance under an environment of Indonesia among divergent cultivars from tropical and temperate regions through in a part biomass productivity. Gas exchange activity again seems to be involved. Unlike in North America where transpiration adjustment is considered necessary to avoid terminal drought, under the monsoon climate with wet summer plants with higher activity of gas exchange than current level might be advantageous. In order to explore higher or better-adjusted canopy function, the methodological development is demanded for canopy-level evaluation of transpiration activity. The stagnation of soybean yield would be broken through controlling variable water environment and breeding efforts to improve the quality-oriented cultivars for stable and high yield.

  • PDF

Mathematical Models of Photosynthetic Rate of Hydroponically Grown Cucumber Plants as Affected by Light Intensity, Air Temperature, Carbon Dioxide and Leaf Nitrogen Content (광도, 온도, $\textrm{CO}_2$ 농도 및 엽중 질소농도의 변화에 따른 양액재배 오이의 광합성속도에 관한 수리적 모형)

  • 임준택;백선영;정현희;현규환;권병선
    • Journal of Bio-Environment Control
    • /
    • v.9 no.3
    • /
    • pp.171-178
    • /
    • 2000
  • Gross photosynthetic rats of leaves of hydroponically grown cucumber plants(Cucumis sativus L. cv. Guwoosalichungjang) were measured under various conditions of photosynthetic photon flux(PPF), ambient $CO_2$ concentration, air temperature and leaf nitrogen contents. Light compensation point of leaf photosynthesis appeared to be in the range of 10~20$\mu$mol.m$^{-2}$ .s$^{-1}$ and light saturation point be above 1000$\mu$mol.m$^{-2}$ .s$^{-1}$ . Gross photosynthetic rates increased persistently and asymptotically as air temperature rose from 12$^{\circ}C$ to 32$^{\circ}C$. However, there were only small differences in gross photosynthetic rates in the range of 24-32$^{\circ}C$, so that the range seemed to be optimal for photosynthesis of cucumber plants at the condition of $CO_2$ concentration of 400$\mu$mol.mol$^{-1}$ and PPF of around 400$\mu$mol.m$^{-2}$ .s$^{-1}$ . $CO_2$ compensation point of leaf photosynthesis appeared to be in the range of 20-40$\mu$mol.mol$^{-1}$ and $CO_2$ saturation point be above 1200$\mu$mol.mol$^{-1}$ . Gross photosynthetic rates increased sigmoidally as leaf nitrogen content increased. These environmental factors interacted synergistically to enhance gross photosynthetic rate, so that the rate increased multiplicatively s level of one factor increased progressively with higher levels of he other factors. Mathematical models wer developed to estimate the gross photosynthetic rate in accordance with the variations of these environmental factors. These modes can be used not only to explain he variation of growth or yield of cucumber plants under different environmental conditions but also as building blocks of plant growth model or expert system of cucumber plants.

  • PDF