• Title/Summary/Keyword: model plant

Search Result 4,035, Processing Time 0.029 seconds

Seismic Fragility Analysis of Seismically Isolated Nuclear Power Plant Structures using Equivalent Linear- and Bilinear-Lead Rubber Bearing Model (등가선형 및 이선형 납-고무받침 모델을 적용한 면진된 원전구조물의 지진 취약도 해석)

  • Lee, Jin-Hi;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.207-217
    • /
    • 2015
  • In order to increase seismic performance of nuclear power plant (NPP) in strong seismic zone, lead-rubber bearing (LRB) can be applied to seismic isolation system of NPP structures. Simple equivalent linear model as structural analysis model of LRB is more widely used in initial design process of LRB than a bilinear model. Seismic responses for seismically isolated NPP containment structures subjected to earthquakes categorized into 5 different soil-site classes are calculated by both of the equivalent linear- and bilinear- LRB models and compared each others. It can be observed that the maximum displacements of LRB and shear forces of containment in the case of the equivalent linear LRB model are larger than those in the case of bilinear LRB model. From the seismic fragility curves of NPP containment structures isolated by LRB, it can be observed that seismic fragility in the case of equivalent linear LRB model are about 5~30 % larger than those in the case of bilinear LRB model.

Integrated scheduling model for PVC process

  • Kang, Min-Gu;Moon, Sung-Deuk;Kang, Jin-su;Park, Sun-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1804-1809
    • /
    • 2003
  • In a large-scale chemical plant, there are scheduling problems in inventory and packing process although production process is stabilized. The profit of the plant is restricted by these problems. In order to improve these problems, integrated scheduling model, which is concerned with whole processes from production to shipment, has been developed in this paper. In this model, decision variables are production sequence, silo allocation, amounts of bulk shipment and packing amounts. In case of a real plant, it is hard to solve by deterministic methods because there are too many decision variables to solve. In this paper, genetic algorithm is presented to solve a PVC process scheduling model within an hour with PCs.

  • PDF

Tuning of Dual-input PSS and Its Application to 612 MVA Thermal Plant: Part 1-Tuning Methology of IEEE Type PSS2A Model (다중입력 PSS 튜닝 방법과 612 MVA 화력기 적용: Part 1-IEEE PSS2A 튜닝 방법)

  • Kim, Dong-Joon;Moon, Young-Hwan;Kim, Sung-Min;Kim, Jin-Yi;Hwang, Bong-Hwan;Cho, Jong-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.655-664
    • /
    • 2009
  • This paper, Part 1, describes the effective dual-input PSS parameter design procedure for the IEEE Type PSS2A against the Dangjin 612 MVA thermal plant's EX2000 excitation system. The suggested tuning technique used the model-based PSS tuning method and consisted of three steps: 1) generation system modeling; 2) determination of PSS2A model parameters using linear, time-domain transient and 3-phase simultaneous analyses, and 3) field testing and verification, which are described in Part 2. The effective PSS2A model parameters of EX2000 system in the Dangjin T/P #4 were designed according to the suggested procedure, and verified by using three analyses.

Design of the Controllers for Time-Delay Systems Using the Approximated 2nd-Order Model with Dead-Time (근사화된 2계 모델을 이용한 시간지연 시스템의 제어기 설계)

  • Kim, Jong-Hun;Park, Jong-Sik;Yang, Seung-Hyun;Lee, Suk-Won
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2164-2166
    • /
    • 2002
  • This paper present a controller design scheme for time-delay system. The Smith Predictor has been proposed to solve the problem of time-delay. But this structure has a condition that parameters of plant and model have to be matched accurately. Because of this condition, it is not applied broadly in practical industrial process field. In this paper, the 2nd-order model with dead-time is used as plant model of the Smith Predictor and a main controller is designed by using the effect of mismatch between plant and model.

  • PDF

A Study and Application of Methodology for Applying Simulation to Car Body Assembly Line using Logical Model (Logical 모델을 활용한 자동차 차체 조립 라인의 시뮬레이션 적용을 위한 방안 연구 및 적용)

  • Koo, Lock-Jo;Park, Snag-Chul;Wang, Gi-Nam
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.4
    • /
    • pp.225-233
    • /
    • 2009
  • The objective of this paper is to examine a construction method and verify PLC logic using the logical modeling and simulation of a virtual plant has complex manufacturing system and the domain of application is car body assembly line of automotive industrial operated by PLC Program. The proposed virtual plant model for the analysis of the construction method consists of three types of components which are virtual device, intermediary transfer and controller is modeled by logical model but it the case of the verification of PLC program, HMI and PLC logic in the field substitute for the controller. The implementation of the proposed virtual plant model is conducted PLC Studio which is an object-oriented modeling language based on logical model. As a result, proposed methods enable 3D graphics is designed in the analysis step to use for verification of PLC program without special efforts.

Modeling and Identification of Paper Plants based on PRS (PRS를 이용한 제지공정의 인식 및 모델링에 관한 연구)

  • 오창훈;여영구;강홍
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2004.11a
    • /
    • pp.221-232
    • /
    • 2004
  • Paper process is complex and multivariable system. Identification of a paper process model is imperative for the development of predictive control method. 13-level Pseudo-Random Sequence Signals were used to identify the plant model in which the neural network model was considered model as a real paper process. Results of simulations for identification using 13-level PRS signals and Prediction Error Method are compared with plant operation data. From the comparison, we can see that the dynamics of the model show good agreement with those of real plant.

  • PDF

A study on control of electrohydraulic servosystem with using model reference adaptive contorl theory (모델기준형 적응제어를 이용한 전기유압 서보계의 제어에 관한 연구)

  • Kim, K.H.;Yun, I.R.;PARK, J.B.;Kim, J.K.;Yum, M.O.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.92-99
    • /
    • 1997
  • A model reference adaptive control(MRAC) theory is very useful for controlling a plant of which the parameters are unknown or vary during operation usint only input-output signal of plant. In this study, 2' nd order discreter time MRAC controller is designed for an electrohydraulic position control system which is represented with nonlinear mathematical model and the least square method is adopted for the para-meter adjustment law. This control algorthm is applied to the position control of electrohydraulic servosystem through computer simulation and the effect of the change of load, sampling time upon the performance following reference model and upon the performance of estimating plant parameters are examined.

  • PDF

Development of System Dynamics model for Electric Power Plant Construction in a Competitive Market (경쟁체제 하에서의 발전소 건설 시스템 다이내믹스 모델 개발)

  • 안남성
    • Korean System Dynamics Review
    • /
    • v.2 no.2
    • /
    • pp.25-40
    • /
    • 2001
  • This paper describes the forecast of power plant construction in a competitive korean electricity market. In Korea, KEPCO (Korea Electric Power Corporation, fully controlled by government) was responsible for from the production of the electricity to the sale of electricity to customer. However, the generation part is separated from KEPCO and six generation companies were established for whole sale competition from April 1st, 2001. The generation companies consist of five fossil power companies and one nuclear power company in Korea at present time. Fossil power companies are scheduled to be sold to private companies including foreign investors. Nuclear power company is owned and controlled by government. The competition in generation market will start from 2003. ISO (Independence System Operator will purchase the electricity from the power exchange market. The market price is determined by the SMP(System Marginal Price) which is decided by the balance between demand and supply of electricity in power exchange market. Under this uncertain circumstance, the energy policy planners such as government are interested to the construction of the power plant in the future. These interests are accelerated due to the recent shortage of electricity supply in California. In the competitive market, investors are no longer interested in the investment for the capital intensive, long lead time generating technologies such as nuclear and coal plants. Large unclear and coal plants were no longer the top choices. Instead, investors in the competitive market are interested in smaller, more efficient, cheaper, cleaner technologies such as CCGT(Combined Cycle Gas Turbine). Electricity is treated as commodity in the competitive market. The investors behavior in the commodity market shows that the new investment decision is made when the market price exceeds the sum of capital cost and variable cost of the new facility and the existing facility utilization depends on the marginal cost of the facility. This investors behavior can be applied to the new investments for the power plant. Under these postulations, there is the potential for power plant construction to appear in waves causing alternating periods of over and under supply of electricity like commodity production or real estate production. A computer model was developed to sturdy the possibility that construction will appear in waves of boom and bust in Korean electricity market. This model was constructed using System Dynamics method pioneered by Forrester(MIT, 1961) and explained in recent text by Sternman (Business Dynamics, MIT, 2000) and the recent work by Andrew Ford(Energy Policy, 1999). This model was designed based on the Energy Policy results(Ford, 1999) with parameters for loads and resources in Korea. This Korea Market Model was developed and tested in a small scale project to demonstrate the usefulness of the System Dynamics approach. Korea electricity market is isolated and not allowed to import electricity from outsides. In this model, the base load such as unclear and large coal power plant are assumed to be user specified investment and only CCGT is selected for new investment by investors in the market. This model may be used to learn if government investment in new unclear plants could compensate for the unstable actions of private developers. This model can be used to test the policy focused on the role of unclear investments over time. This model also can be used to test whether the future power plant construction can meet the government targets for the mix of generating resources and to test whether to maintain stable price in the spot market.

  • PDF

Simulation of Grape Downy Mildew Development Across Geographic Areas Based on Mesoscale Weather Data Using Supercomputer

  • Kim, Kyu-Rang;Seem, Robert C.;Park, Eun-Woo;Zack, John W.;Magarey, Roger D.
    • The Plant Pathology Journal
    • /
    • v.21 no.2
    • /
    • pp.111-118
    • /
    • 2005
  • Weather data for disease forecasts are usually derived from automated weather stations (AWS) that may be dispersed across a region in an irregular pattern. We have developed an alternative method to simulate local scale, high-resolution weather and plant disease in a grid pattern. The system incorporates a simplified mesoscale boundary layer model, LAWSS, for estimating local conditions such as air temperature and relative humidity. It also integrates special models for estimating of surface wetness duration and disease forecasts, such as the grapevine downy mildew forecast model, DMCast. The system can recreate weather forecasts utilizing the NCEP/NCAR reanalysis database, which contains over 57 years of archived and corrected global upper air conditions. The highest horizontal resolution of 0.150 km was achieved by running 5-step nested child grids inside coarse mother grids. Over the Finger Lakes and Chautauqua Lake regions of New York State, the system simulated three growing seasons for estimating the risk of grape downy mildew with 1 km resolution. Outputs were represented as regional maps or as site-specific graphs. The highest resolutions were achieved over North America, but the system is functional for any global location. The system is expected to be a powerful tool for site selection and reanalysis of historical plant disease epidemics.

System Modeling and Robust Control of an AMB Spindle : Part I Modeling and Validation for Robust Control

  • Ahn, Hyeong-Joon;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1844-1854
    • /
    • 2003
  • This paper discusses details of modeling and robust control of an AMB (active magnetic bearing) spindle, and part I presents a modeling and validation process of the AMB spindle. There are many components in AMB spindle : electromagnetic actuator, sensor, rotor, power amplifier and digital controller. If each component is carefully modeled and evaluated, the components have tight structured uncertainty bounds and achievable performance of the system increases. However, since some unknown dynamics may exist and the augmented plant could show some discrepancy with the real plant, the validation of the augmented plant is needed through measuring overall frequency responses of the actual plant. In addition, it is necessary to combine several components and identify them with a reduced order model. First, all components of the AMB spindle are carefully modeled and identified based on experimental data, which also render valuable information in quantifying structured uncertainties. Since sensors, power amplifiers and discretization dynamics can be considered as time delay components, such dynamics are combined and identified with a reduced order. Then, frequency responses of the open-loop plant are measured through closed-loop experiments to validate the augmented plant. The whole modeling process gives an accurate nominal model of a low order for the robust control design.