• Title/Summary/Keyword: model parameter

Search Result 7,189, Processing Time 0.039 seconds

Nonlinear pH Control Using a Three Parameter Model

  • Lee, Jie-Tae;Park, Ho-Cheol
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.130-135
    • /
    • 2000
  • A two parameter model of a single fictitious weak acid with unknown dissociation constant has been successfully applied to design a neutralization system for many multi-component acid streams. But there are some processes for which above two parameter model is not satisfactory due to poor approxmation of the nonlinearity of pH process. Here, for etter control of wide class of multi-component acid streams, a three parameter model of a strong acid and a weak acid with unknown dissociation constant is proposed. The model approximates effectively three types of largest gain variation nonlinearities. Based on this model a nonlinear pH control system is designed. Parameters can eeasily estimated since their combinations appear linearly in the model equations and nonlinear adaptive control system may also be constructed just as with the two parameter model.

  • PDF

Model Parameter-based Rate Control Algorithm for Constant Quality Real-Time Video Coding (실시간 부호화를 위한 모델 파라미터 기반 일정 화질 비트율 제어 기법)

  • Jeong, Jin-Woo;Cho, Kyung-Min;Choe, Yoon-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.3
    • /
    • pp.93-102
    • /
    • 2008
  • In this paper, we propose a rate control algorithm for constant quality real time video coding. To achieve constant quality, previous algorithm exploit mean absolute of difference(MAD) as measure of frame complexity. However, if scene is abruptly changed or if quantization parameter is not constant, encoder produces various output bits with same MAD. Therefore we know that MAD does not appropriately reflect characteristic of frame. To solve this problem, we exploit model parameter as measure of frame complexity. Because model parameter means slope between output bits and MAD, it reflects correctly complexity of frame. And because previous model, R-MAD model, is not considered quantization parameter, as quantization parameter increases or decreases, model parameter of frame also vary. So model parameter obtained using previous model cannot reflect internal characteristic of video. We solve this problem using proposed model, which is considered quantization parameter. Experiment results show that our algorithm provide better performance, in terms of quality smoothness than previous algorithm. Especially, when scene is abruptly changed, our algorithm alleviates quality drop.

Catchment Responses in Time and Space to Parameter Uncertainty in Distributed Rainfall-Runoff Modeling (분포형 강우-유출 모형의 매개변수 불확실성에 대한 시.공간적 유역 응답)

  • Lee, Gi-Ha;Takara, Kaoru;Tachikawa, Yasuto;Sayama, Takahiro
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.2215-2219
    • /
    • 2009
  • For model calibration in rainfall-runoff modeling, streamflow data at a specific outlet is obviously required but is not sufficient to identify parameters of a model since numerous parameter combinations can result in very similar model performance measures (i.e. objective functions) and indistinguishable simulated hydrographs. This phenomenon has been called 'equifinality' due to inherent parameter uncertainty involved in rainfall-runoff modeling. This study aims to investigate catchment responses in time and space to various uncertain parameter sets in distributed rainfall-runoff modeling. Seven plausible (or behavioral) parameter sets, which guarantee identically-good model performances, were sampled using deterministic and stochastic optimization methods entitled SCE and SCEM, respectively. Then, we applied them to a computational tracer method linked with a distributed rainfall-runoff model in order to trace and visualize potential origins of streamflow at a catchment outlet. The results showed that all hydrograph simulations based on the plausible parameter sets were performed equally well while internal catchment responses to them showed totally different aspects; different parameter values led to different distributions with respect to the streamflow origins in space and time despite identical simulated hydrographs. Additional information provided by the computational tracer method may be utilized as a complementary constraint for filtering out non-physical parameter set(s) (or reducing parameter uncertainty) in distributed rainfall-runoff modeling.

  • PDF

An Extended Model Evaluation Method under Uncertainty in Hydrologic Modeling

  • Lee, Giha;Youn, Sangkuk;Kim, Yeonsu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.5
    • /
    • pp.13-25
    • /
    • 2015
  • This paper proposes an extended model evaluation method that considers not only the model performance but also the model structure and parameter uncertainties in hydrologic modeling. A simple reservoir model (SFM) and distributed kinematic wave models (KWMSS1 and KWMSS2 using topography from 250-m, 500-m, and 1-km digital elevation models) were developed and assessed by three evaluative criteria for model performance, model structural stability, and parameter identifiability. All the models provided acceptable performance in terms of a global response, but the simpler SFM and KWMSS1 could not accurately represent the local behaviors of hydrographs. Moreover, SFM and KWMSS1 were structurally unstable; their performance was sensitive to the applied objective functions. On the other hand, the most sophisticated model, KWMSS2, performed well, satisfying both global and local behaviors. KMSS2 also showed good structural stability, reproducing hydrographs regardless of the applied objective functions; however, superior parameter identifiability was not guaranteed. A number of parameter sets could result in indistinguishable hydrographs. This result indicates that while making hydrologic models complex increases its performance accuracy and reduces its structural uncertainty, the model is likely to suffer from parameter uncertainty.

On the Local Identifiability of Load Model Parameters in Measurement-based Approach

  • Choi, Byoung-Kon;Chiang, Hsiao-Dong
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.149-158
    • /
    • 2009
  • It is important to derive reliable parameter values in the measurement-based load model development of electric power systems. However parameter estimation tasks, in practice, often face the parameter identifiability issue; whether or not the model parameters can be estimated with a given input-output data set in reliable manner. This paper introduces concepts and practical definitions of the local identifiability of model parameters. A posteriori local identifiability is defined in the sense of nonlinear least squares. As numerical examples, local identifiability of third-order induction motor (IM) model and a Z-induction motor (Z-IM) model is studied. It is shown that parameter ill-conditioning can significantly affect on reliable parameter estimation task. Numerical studies show that local identifiability can be quite sensitive to input data and a given local solution. Finally, several countermeasures are proposed to overcome ill-conditioning problem in measurement-based load modeling.

A Study on the GaAs MESFET Model Parameter Extraction (GaAs MESFET 모델 매개변수 추출에 관한 연구)

  • 박의준;박진우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.7
    • /
    • pp.628-639
    • /
    • 1991
  • A new efficient method for GaAs MESFET model parameter extraction is proposed, which is based on the bias dependance of each parameter characteristics derved from the analytic model. The requiremnts of the method are only small-signal S-parameter measurements under the three bias variations. Fixation of the linear model parameter values in the optimization process is made using the sensitivity information of the model parameter obtained by the weighted Broyden update method, it is to improve the uniqueness and reliablility of the solution. The validity of the extracted values of the FET model parameters is confirmed by comparing the simulation results with the experimental data.

  • PDF

A Study on the SPICE Model Parameter Extraction Method for the BJT DC Model (BJT의 DC 해석 용 SPICE 모델 파라미터 추출 방법에 관한 연구)

  • Lee, Un-Gu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1769-1774
    • /
    • 2009
  • An algorithm for extracting the BJT DC model parameter values for SPICE model is proposed. The nonlinear optimization method for analyzing the device I-V data using the Levenberg-Marquardt algorithm is proposed and the method for calculating initial conditions of model parameters to improve the convergence characteristics is proposed. The base current and collector current obtained from the proposed method shows the root mean square error of 6.04% compared with the measured data of the PNP BJT named 2SA1980.

The CMOS RF model parameter for high frequency communication circuit design (고주파통신회로 설계를 위한 CMOS RF 모델 파라미터)

  • 여지환
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.6 no.3
    • /
    • pp.123-127
    • /
    • 2001
  • The prediction method of the parameter C/sub gs/ of CMOS transistor is proposed by calculating the mobil charge in inversion layer of COMS transistor. This parameter C/sub gs/ decided on the cutoff frequency in MOS transistor in RF range and coupled input and output. This parameter C/sub gs/ in RF range is very important parameter in small signal circuit model. This proposed method is contributed to developing software of extracting parameter value in equivalent circuit model. The method provide the important information to construct a RF nonlinear model for multifinger gate MOSFET. This method will be very valuable to develop a large signal MOSFET model for nonlinear RF IC design.

  • PDF

Mathematical Description of Seedling Emergence of Rice and Echinochloa species as Influenced by Soil burial depth

  • Kim Do-Soon;Kwon Yong-Woong;Lee Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.4
    • /
    • pp.362-368
    • /
    • 2006
  • A pot experiment was conducted to investigate the effects of soil burial depth on seedling emergences of rice (Oryza sativa) and Echinochloa spp. and to model such effects for mathematical prediction of seedling emergences. When the Gompertz curve was fitted at each soil depth, the parameter C decreased in a logistic form with increasing soil depth, while the parameter M increased in an exponential form and the parameter B appeared to be constant. The Gompertz curve was combined by incorporating the logistic model for the parameter C, the exponential model for the parameter M, and the constant for the parameter B. This combined model well described seedling emergence of rice and Echinochloa species as influenced by soil burial depth and predicted seedling emergence at a given time after sowing and a soil burial depth. Thus, the combined model can be used to simulate seedling emergence of crop sown in different soil depths and weeds present in various soil depths.

Model Updating of Beams with Shape Change and Measurement Error Using Parameter Modification (파라미터 수정을 사용한 형상변화 및 측정오차가 있는 빔의 모델개선)

  • Yoon, Byung-Ok;Choi, Yoo-Keun;Jang, In-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.335-340
    • /
    • 2001
  • It is important to model the mechanical structure precisely and reasonably in predicting the dynamic characteristics, controlling the vibration, and designing the structure dynamics. In the finite element modeling, the errors can be contained from the physical parameters, the approximation of the boundary conditions, and the element modeling. From the dynamic test, more precise dynamic characteristics can be obtained. Model updating using parameter modification is appropriate when the design parameter is used to analyze the input parameter like finite element method. Finite element analysis for cantilever and simply supported beams with uniform area and shape change are carried out as model updating examples. Mass and stiffness matrices are updated by comparing test and analytical modal frequencies. The result shows that the updated frequencies become closer to the test frequencies.

  • PDF